版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.16的值为()A.±4 B.±8 C.4 D.82.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°4.如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC边上的一动点,则ΔDNM周长的最小值是()A.3 B.4 C.5 D.65.平行四边形所具有的性质是()A.对角线相等 B.邻边互相垂直C.两组对边分别相等 D.每条对角线平分一组对角6.下列计算或化简正确的是()A. B.C. D.7.小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是().A. B. C. D.8.对于二次函数的图象与性质,下列说法正确的是()A.对称轴是直线,最大值是2 B.对称轴是直线,最小值是2C.对称轴是直线,最大值是2 D.对称轴是直线,最小值是29.将分式中的a,b都扩大2倍,则分式的值()A.不变 B.也扩大2倍 C.缩小二分之一 D.不能确定10.已知点A(-5,y1)、B(-2,y2)都在直线y=-x上,则y1与y2的关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.有一组数据如下:
2,
2,
0,1,
1.那么这组数据的平均数为__________,方差为__________.12.如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.13.如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.14.矩形内一点到顶点,,的长分别是,,,则________________.15.将二次函数化成的形式,则__________.16.如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,CF=8,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A',D'处,当点D'落在直线BC上时,线段AE的长为17.某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.18.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.三、解答题(共66分)19.(10分)某乳品公司向某地运输一批牛奶,若由铁路运输,每千克牛奶只需运费0.60元;若由公路运输,不仅每千克牛奶需运费0.30元,而且还需其他费用600元.设该公司运输这批牛奶为x千克,选择铁路运输时所需费用为y1元;选择公路运输时所需费用为y2元.(1)请分别写出y1,y2与x之间的关系式;(2)公司在什么情况下选择铁路运输比较合算?什么情况下选择公路运输比较合算?20.(6分)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?21.(6分)分解因式:(1)4m2-9n2(2)x2y-2xy2+y322.(8分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.23.(8分)先化简,再求值:,其中是中的一个正整数解.24.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.25.(10分)计算:(小题1)解不等式组26.(10分)某河流防污治理工程已正式启动,由甲队单独做5个月后,乙队再加入合作3个月就可以完成这项工程。已知若甲队单独做需要10个月可以完成。(1)乙队单独完成这项工程需要几个月?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
16表示16的算术平方根,根据二次根式的意义解答即可.【详解】16=故选C.【点睛】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.2、A【解析】试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选A.考点:特殊四边形的性质3、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4、D【解析】
由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为使DN+MN最小的点,在Rt△BCM中利用勾股定理求出BM的长即可.【详解】解:∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,则BM的长即为DN+MN的最小值,又CM=CD−DM=4−1=3,在Rt△BCM中,BM=CM2故△DMN周长的最小值=5+1=6,故选:D.【点睛】本题考查的是轴对称−最短路线问题及正方形的性质,根据点B与点D关于直线AC对称,可知BM的长即为DN+MN的最小值是解答此题的关键.5、C【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.【详解】解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.故选:C.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.6、D【解析】解:A.不是同类二次根式,不能合并,故A错误;B.
,故B错误;C.,故C错误;D.,正确.故选D.7、C【解析】
根据在每段中,离家的距离随时间的变化情况即可进行判断.【详解】图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.
故选:C.【点睛】本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.8、A【解析】
根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选:A.【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.9、B【解析】
依题意,分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.【详解】分别用2a和2b去代换原分式中的a和b,原式==可见新分式的值是原分式的2倍.故选B.【点睛】此题考查分式的基本性质,解题关键在于分别用2a和2b去代换原分式中的a和b10、D【解析】
根据一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可解答.【详解】解:∵点A(-5,y1)、B(-2,y2)都在直线y=-x上,∴y1=,y2=1.∵>1,∴y1>y2.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.二、填空题(每小题3分,共24分)11、11【解析】分析:先算出数据的平均数,再根据方差的计算公式,代入公式计算即可得到结果.详解:平均数为:(-2+2+0+1+1)÷5=1,=,故答案为1,1.点睛:本题考查了平均数与方差的应用,先求出这组数据的平均数,再根据方差公式进行计算即可.12、1-1【解析】如图,过P作PE⊥CD,PF⊥BC,∵正方形ABCD的边长是1,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,∴∠PCE=30°∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.故答案为1﹣1.点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.13、75°【解析】【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB,∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,又∵AD∥BC,∴∠AGB=∠GBC,∴∠AGB=∠BGH,∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14、【解析】
如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.【详解】解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25∴2(a2+c2)+b2+d2=9+16+25∴b2+d2=18∴PD=,故答案为.【点睛】本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.15、【解析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:,,.故答案为:.【点睛】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.16、4或1【解析】
分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.【详解】解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,∴CD′=D'F2-C∴BD'=BC−CD'=12,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,∴182+x2=(18−x)2+122,解得:x=4,即AE=4;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,CD'=D'F2-C∴BD'=BC+CD'=24,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,∴182+x2=(18−x)2+242,解得:x=1,即AE=1;综上所述,线段AE的长为4或1;故答案为:4或1.【点睛】本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.17、1【解析】
根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.【详解】解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为1时,根据题意得(1+1+x+8)÷4=1,解得x=12,将这组数据从小到大的顺序排列8,1,1,12,处于中间位置的是1,1,所以这组数据的中位数是(1+1)÷2=1.故答案为1【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.18、1.【解析】解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.三、解答题(共66分)19、(1)y1=0.6x,y2=0.3x+600;(2)当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.【解析】
(1)选择铁路运输时所需的费用y1=每千克运费0.6元×牛奶重量,选择公路运输时所需的费用y2=每千克运费0.3元×牛奶重量+600元;(2)当选择铁路运输比较合算时y1<y2,进而可得不等式0.6x<0.3x+600,当选择公路运输比较合算时,0.6x>0.3x+600,分别解不等式即可.【详解】解:(1)由题意得:y1=0.6x,y2=0.3x+600;(2)当选择铁路运输比较合算时,0.6x<0.3x+600,解得:x<2000,∵x>0,∴0<x<2000,当选择公路运输比较合算时,0.6x>0.3x+600,解得:x>2000,答:当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.【点睛】此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.20、特快列车的平均速度为90km/h,动车的速度为1km/h.【解析】
设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【详解】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=1.答:特快列车的平均速度为90km/h,动车的速度为1km/h.考点:分式方程的应用.21、(1)(1m-3n)(1m+3n)(1)y(x-y)1.【解析】
(1)利用平方差公式进行因式分解.(1)先提取公因式,然后利用完全平方公式解答.【详解】解:(1)原式=(1m-3n)(1m+3n).(1)原式=y(x1-1xy+y1)=y(x-y)1.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22、见解析【解析】
根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.【详解】证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.【点睛】本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.23、化简为,当x=3时,此时的值为-10.【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可,【详解】解:原式====,当x=3时,代入原式=;【点睛】本题主要考查了分式的化简求值,掌握分式的化简求值是解题的关键.24、(1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.【解析】试题分析:(1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;(2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;试题解析:(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得:,∴手机支付金额y(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国门铃按键数据监测研究报告
- 2024至2030年中国苦荞麦提取物行业投资前景及策略咨询研究报告
- 放射性金属矿矿山安全生产管理体系考核试卷
- 2024-2030年中国气体定性检漏仪融资商业计划书
- 建立灵活的第三方安全管理框架考核试卷
- 《改进的杜邦分析法在南玻集团的应用研究》
- 企业工作总价报告的企业运营效率提升方案考核试卷
- 《北京冬奥会赛事舆情的情感传播及优化路径研究》
- 2024-2030年中国核桃油市场销售规模及营销前景预测报告
- 绿色饲料对养殖环境影响分析
- 安全驾驶培训
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 山东济南天桥区2024-2025学年八年级物理第一学期期中考试试题(含答案)
- 《中华人民共和国突发事件应对法》知识培训
- 托班语言夏天课程设计
- 湖北省武汉市洪山区2023-2024学年八年级上学期期中英语试题(无答案)
- 光伏项目施工总进度计划表(含三级)
- 医院培训课件:《健康教育 知-信-行》
- 檐口检验批质量验收记录
- 鉴定附件1关于组织2018年甘肃省教育科学规划课题集中鉴定结题的通知
- 球磨机安装施工工法
评论
0/150
提交评论