版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若式子有意义,则x的取值范围是()A.x> B.x< C.x≥ D.x≤2.若A(,)、B(,)是一次函数y=(a-1)x+2图象上的不同的两个点,当>时,<,则a的取值范围是()A.a>0 B.a<0 C.a>1 D.a<13.下列等式成立的是()A.(-3)-2=-9 B.(-3)-2=C.(a12)2=a14 D.0.0000000618=6.18×10-74.如图,一客轮以16海里/时的速度从港口A出发向东北方向航行,另一客轮同时以12海里/时的速度从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里 D.40海里5.要使函数y=(m﹣2)xn﹣1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=06.如果点E、F、G、H分别是四边形ABCD四条边的中点,若EFGH为菱形,则四边形应具备的下列条件中,不正确的个数是()①一组对边平行而另一组对边不平行;②对角线互相平分;③对角线互相垂直;④对角线相等A.1个 B.2个 C.3个 D.4个7.如图,被笑脸盖住的点的坐标可能是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)8.若x1、x2是x2+x﹣1=0方程的两个不相等的实数根,则x1+x2﹣x1x2的值为()A.+1 B.﹣2 C.﹣2 D.09.一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟10.下列各式中,化简后能与合并的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.12.直线y=x+1与y=-x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为___.13.若的整数部分为,小数部分为,则的值是___.14.小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.15.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________.16.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.17.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.18.如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.三、解答题(共66分)19.(10分)探索发现:……根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:(3)利用规律解方程:20.(6分)如图,在△ABC中.AC=BC=5.AB=6.CD是AB边中线.点P从点C出发,以每秒2.5个单位长度的速度沿C-D-C运动.在点P出发的同时,点Q也从点C出发,以每秒2个单位长度的速度沿边CA向点A运动.当一个点停止运动时,另一个点也随之停止,设点P运动的时间为t秒.(1)用含t的代数式表示CP、CQ的长度.(2)用含t的代数式表示△CPQ的面积.(3)当△CPQ与△CAD相似时,直接写出t的取值范围.21.(6分)初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:(1)本次调查共抽测了多少名学生?(2)在这个问题中的样本指什么?(3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?22.(8分)阅读理解题在平面直角坐标系中,点到直线的距离公式为:,例如,求点到直线的距离.解:由直线知:所以到直线的距离为:根据以上材料,解决下列问题:(1)求点到直线的距离.(2)若点到直线的距离为,求实数的值.23.(8分)当a在什么范围内取值时,关于x的一元一次方程的解满足?24.(8分)如图,在平行四边形ABCD中(AB>AD),AF平分∠DAB,交CD于点F,DE平分∠ADC,交AB于点E,AF与DE交于点O,连接EF(1)求证:四边形AEFD为菱形;(2)若AD=2,AB=3,∠DAB=60°,求平行四边形ABCD的面积.25.(10分)某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(2)何时两种收费方式费用相等?26.(10分)如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.求证:四边形ABCD是等腰梯形.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据二次根式有意义,被开方数大于等于0,列不等式求解即可得.【详解】根据题意,得3-2x≥0,解得:x≤,故选D.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.2、D【解析】
根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.【详解】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,
可得:a-1<0,
解得:a<1.
故选D.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.3、B【解析】∵,∴A、C、D均不成立,成立的是B.故选B.4、D【解析】
首先根据路程=速度×时间可得AC、AB的长,然后连接BC,再利用勾股定理计算出BC长即可.【详解】解:连接BC,
由题意得:AC=16×2=32(海里),AB=12×2=24(海里),
CB==40(海里),
故选:D.【点睛】本题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.5、C【解析】
根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)xn﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.6、C【解析】
因为四边相等才是菱形,因为E、F、G、H是四边形ABCD四条边的中点,那么菱形的四条边都是对角线的中位线,所以对角线一定要相等.【详解】解:连接AC,BD,∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,∴EF=FG=GH=EH,∵FG=EH=DB,HG=EF=AC,∴要使EH=EF=FG=HG,∴BD=AC,∴四边形ABCD应具备的条件是BD=AC,故选:C.【点睛】此题主要考查了三角形中位线的性质以及菱形的判定方法,正确运用菱形的判定定理是解决问题的关键.7、C【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.【详解】由图可知,被笑脸盖住的点在第三象限,(3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.故选C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】
根据韦达定理知x1+x2=﹣1、x1x2=﹣1,代入计算可得.【详解】解:∵x1、x2是x2+x﹣1=0方程的两个不相等的实数根,∴x1+x2=﹣1、x1x2=﹣1,∴原式=﹣1﹣(﹣1)=0,故选:D.【点睛】本题主要考查根与系数的关系,解题的关键是掌握韦达定理和整体代入思想的运用.9、C【解析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.10、B【解析】
分别化简,与是同类二次根式才能合并.【详解】解:A不能与合并B能与合并C不能与合并D不能与合并故答案为:B【点睛】本题考查知识点:同类二次根式.解题关键点:将二次根式化简成最简二次更是,以及理解同类二次根式的定义.二、填空题(每小题3分,共24分)11、y=2x+1【解析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.12、16【解析】
在y=x+1中,令y=0,得x+1=0,解得x=−1,∴点A的坐标为(−1,0),在y=−x+7中,令y=0,得−x+7=0,解得x=7,∴点B的坐标为(7,0),联立两直线解析式得,解得,∴点C的坐标为(3,4);即点C的纵坐标为4∵AB=7−(−1)=8,∴S△ABC=×8×4=16.故答案为16.13、3【解析】
先估算,再估算,根据6-的整数部分为x,小数部分为y,可得:x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,y=,所以(2x+)y=,故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.14、两组对边分别相等的四边形是平行四边形.【解析】根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.故答案是:两组对边分别相等的四边形是平行四边形.15、7【解析】
试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=7,又因OM=OC=7,于是可确定点M对应的数为7.考点:勾股定理;实数与数轴.16、3;【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.【详解】根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.【点睛】本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.17、1【解析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×6×3=1,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=1.故答案为1.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.18、【解析】
设直线与x轴交于点C,由直线BC的解析式可得出结合可得出,通过解含30度角的直角三角形即可得出b值.【详解】设直线与x轴交于点C,如图所示:∵直线BC的解析式为y=x+b,∴∵∴当x=0时,y=x+b=b.在Rt△ABO中,OB=b,OA=5,∴AB=2b,∴∴故答案为:【点睛】考查待定系数法求一次函数解析式,三角形的外角性质,含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.三、解答题(共66分)19、(1);(2);(1)见解析.【解析】
(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(1)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1),;故答案为(2)原式=;(1)已知等式整理得:所以,原方程即:,方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=1,检验:把x=1代入x(x+5)=24≠0,∴原方程的解为:x=1.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.20、(1)当0<t≤时,CP=2.5t,CQ=2t;当时,CP=8-2.5t,CQ=2t.(2)当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=;当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)0<t≤或s【解析】
(1)分两种情形:当0<t≤时,当<t时,分别求解即可.(2)分两种情形:当0<t≤时,当<t≤时,根据S△CPQ=•PC•sin∠ACD•CQ分别求解即可.(3)分两种情形:当0<t≤,可以证明△QCP∽△DCA,当<t,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD===4,当0<t≤时,CP=2.5t,CQ=2t,当时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD==,∴当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)①当0<t≤时,∵CP=2.5t,CQ=2t,∴=,∵=,∴,∵∠PCQ=∠ACD,∴△QCP∽△DCA,∴0<t≤时,△QCP∽△DCA,②当时,当∠QPC=90°时,△QPC∽△ADC,∴,∴,解得:,综上所述,满足条件的t的值为:0<t≤或s时,△QCP∽△DCA.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.21、(1)共抽测了240名学生(2)样本是240名学生的视力情况(3)【解析】
解:(1)共抽测了学生人数:20+40+90+60+30=240(名)(2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况(3)依题意知,视力在4.9-5.1(含4.9和5.1)均属正常,可从直方图判断一共有(60+30)人合格.故3万学生合格人数为:(名)考点:抽样调查点评:本题难度较低,主要考查学生对抽样调查及直方统计图知识点的掌握,正确读懂统计图数据位解题关键.22、(1)1;(2)1或-3.【解析】
(1)根据点到直线的距离公式求解即可;(2)根据点到直线的距离公式,列出方程即可解决问题.【详解】解:由直线知:A=3,B=-4,C=-5,∴点到直线的距离为:d=;(2)由点到直线的距离公式得:∴|1+C|=2解得:C=1或-3.点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.23、【解析】
先求出一元一次方程的解,然后根据解为,求出a的范围.【详解】解:去分母得:4x+2a=3−3x,移项得:7x=3−2a,解得,因为,所以,所以.【点睛】此题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国门铃按键数据监测研究报告
- 2024至2030年中国苦荞麦提取物行业投资前景及策略咨询研究报告
- 放射性金属矿矿山安全生产管理体系考核试卷
- 2024-2030年中国气体定性检漏仪融资商业计划书
- 建立灵活的第三方安全管理框架考核试卷
- 《改进的杜邦分析法在南玻集团的应用研究》
- 企业工作总价报告的企业运营效率提升方案考核试卷
- 《北京冬奥会赛事舆情的情感传播及优化路径研究》
- 2024-2030年中国核桃油市场销售规模及营销前景预测报告
- 绿色饲料对养殖环境影响分析
- 安全驾驶培训
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 山东济南天桥区2024-2025学年八年级物理第一学期期中考试试题(含答案)
- 《中华人民共和国突发事件应对法》知识培训
- 托班语言夏天课程设计
- 湖北省武汉市洪山区2023-2024学年八年级上学期期中英语试题(无答案)
- 光伏项目施工总进度计划表(含三级)
- 医院培训课件:《健康教育 知-信-行》
- 檐口检验批质量验收记录
- 鉴定附件1关于组织2018年甘肃省教育科学规划课题集中鉴定结题的通知
- 球磨机安装施工工法
评论
0/150
提交评论