2023年甘肃省庆阳市庙渠初级中学数学八下期末联考试题含解析_第1页
2023年甘肃省庆阳市庙渠初级中学数学八下期末联考试题含解析_第2页
2023年甘肃省庆阳市庙渠初级中学数学八下期末联考试题含解析_第3页
2023年甘肃省庆阳市庙渠初级中学数学八下期末联考试题含解析_第4页
2023年甘肃省庆阳市庙渠初级中学数学八下期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形2.如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6 B.5 C.4 D.33.菱形的两条对角线长分别为12与16,则此菱形的周长是()A.10 B.30 C.40 D.1004.已知实数满足,则代数式的值是()A.7 B.-1 C.7或-1 D.-5或35.若点在反比例函数的图象上则的值是()A. B. C.1.5 D.66.如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为()A.7 B.9 C.3 D.47.已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.8.用配方法解方程,配方正确的是()A. B. C. D.9.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣ B.﹣ C.﹣3 D.﹣210.如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为()A.4 B.6 C.12 D.24二、填空题(每小题3分,共24分)11.如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.12.李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)13.如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.14.在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________米.15.如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________16.如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.17.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.18.若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆,且AB大于AD.设AD为xm,依题意可列方程为______.三、解答题(共66分)19.(10分)乙知关于的方程.(1)试说明无论取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为,试求的值.20.(6分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.21.(6分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.22.(8分)解不等式组,并将解集在数轴上表示出来.23.(8分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.求证:四边形AFF′D是菱形.24.(8分)如图,直线m的表达式为y=﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)(1)求直线n的表达式.(2)求△ABC的面积.(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是.25.(10分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.(10分)问题情境:平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.数学探究:点C的坐标为______;求点E的坐标及直线BE的函数关系式;若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?若存在,直接写出相应的点Q的坐标;若不存在,说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a(b-c)+2(b-c)=0,∴(a+2)(b-c)=0,∵a、b、c为三角形的三边,∴b-c=0,则b=c,∴这个三角形的形状是等腰三角形.故选:A.【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.2、D【解析】

根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=AD=×8=4,在Rt△ABE中,,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.【点睛】本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.3、C【解析】

首先根据题意画出图形,然后由菱形的两条对角线长分别为12与16,利用勾股定理求得其边长,继而求得答案.【详解】解:∵如图,菱形ABCD中,AC=16,BD=12,∴OA=AC=8,OB=BD=6,AC⊥BD,∴AB==10,∴此菱形的周长是:4×10=1.故选:C.【点睛】此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是解此题的关键.4、A【解析】

将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.【详解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解;当x2﹣x=6时,x2﹣x+1=7,故选A.【点睛】本题考查了用因式分解法解一元二次方程,解本题的关键是把x2-x看成一个整体.5、A【解析】

将A的坐标代入反比例函数进行计算,可得答案.【详解】将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.【点睛】本题考查反比例函数,解题的关键是将点A代入反比例函数.6、A【解析】

根据勾股定理得到AC==25,连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.【详解】解:连接BD,交AC于点O,在△ABC中,∠ABC=90°,AB=20,BC=15,

∴AC==25,

连接BD交AC于O,

∵四边形BCDE为菱形,

∴BD⊥CE,BO=DO,EO=CO,

∴BO===12,

∴OC==9,

∴CE=2OE=18,

∴AE=7,

故选:A.【点睛】本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.7、D【解析】

利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.【点睛】本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.8、C【解析】

把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,配方得(x-1)2=1.故选C.【点睛】本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.9、B【解析】

直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【详解】解:∵在Rt△AOB中,OA=2,AB=1,

∴OB==.

∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,

∴OC=OB=,

∴点C表示的实数是-.

故选B.【点睛】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10、C【解析】

根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.【详解】解:由图可知,AB=BC=CD=DA,∴该四边形为菱形,又∵AC=4,BD=6,∴菱形的面积为4×6×=1.故选:C.【点睛】主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.二、填空题(每小题3分,共24分)11、【解析】

OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.【详解】解:OC与AB相交于D,如图,由作法得OA=OB=AC=BC,∴四边形OACB为菱形,∴OC⊥AB,AD=BD=1,OD=CD,∵四边形OACB的周长为8cm,∴OB=2,在Rt△OBD中,OD=,∴OC=2OD=2cm.故答案为.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).12、1【解析】

首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.【详解】解:设每个羽毛球拍降价x元,由题意得:(40-x)(20+5x)=1700,即x2-31x+180=0,解之得:x=1或x=20,因为每个降价幅度不超过15元,所以x=1符合题意,故答案是:1.【点睛】本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.13、x≤1【解析】

根据图象的性质,当y≤0即图象在x轴下侧,x≤1.【详解】根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.故答案为x≤1【点睛】本题考查一次函数的图象,考查学生的分析能力和读图能力.14、32【解析】分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.详解:∵D、E分别是CA,CB的中点,

∴DE是△ABC的中位线,

∴DE∥AB,且AB=2DE,

∵DE=16米,

∴AB=32米.

故答案是:32.点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.15、<k≤2.【解析】

直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.【详解】∵直线y=kx+b过点N(0,-2),∴b=-2,∴y=kx-2.当直线y=kx-2的图象过A点(2,3)时,2k-2=3,k=2;当直线y=kx-2的图象过B点(2,2)时,k-2=2,k=2;当直线y=kx-2的图象过C点(4,2)时,4k-2=2,k=,∴k的取值范围是<k≤2.故答案为<k≤2.【点睛】本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.16、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-217、1.【解析】

∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18、(无需写成一般式)【解析】

根据AD=xm,就可以得出AB=38-x,由矩形的面积公式结合矩形是“优美矩形”就可以得出关于x的方程.【详解】∵AD=xm,且AB大于AD,∴AB=38-x,∵矩形ABCD是“优美矩形”,∴整理得:.故答案为:.【点睛】考查了根据实际问题列一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.三、解答题(共66分)19、(1)详见解析;(2)2003【解析】

(1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=3代入方程得k2+6k=-8,代入原式计算可得.【详解】解:(1),无论取何值时,方程总有两个不相等的实数根;(2)因为方程有一个根为,,即【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.20、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解析】

(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【点睛】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.21、(1)见解析;(2)见解析.【解析】

(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.【点睛】全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.22、不等式组的解集是﹣1<x≤3.【解析】

分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.详解:由①得:x≤3,由②得:x>﹣1,∴不等式组的解集是﹣1<x≤3,在数轴上表示不等式组的解集为:.点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.23、(1)C;(2)详见解析.【解析】

(1)根据矩形的判定可得答案;(2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D四边都相等,即可得证.【详解】解:(1)由题意可知AD与EE′平行且相等,∵AE⊥BC,∴四边形AEE′D为矩形故选C;(2)∵AD=5,S□ABCD=15,∴AE=3,又∵在图2中,EF=4,∴在Rt△AEF中,AF=,∴AF=AD=5,又∵AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形,又∵AF=AD,∴四边形AFF′D是菱形.24、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).【解析】

(1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;

(2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;

(3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.【详解】(1)∵直线m过C点,

∴-3=-3t+3,解得t=2,

∴C(2,-3),

设直线n的解析式为y=kx+b,

把A、C两点坐标代入可得,解得,

∴直线n的解析式为y=1.5x-6;

(2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,

∴B(1,0),且A(4,0),

∴AB=4-1=3,且C点到x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论