2023年南京市秦淮区四校数学八年级第二学期期末达标测试试题含解析_第1页
2023年南京市秦淮区四校数学八年级第二学期期末达标测试试题含解析_第2页
2023年南京市秦淮区四校数学八年级第二学期期末达标测试试题含解析_第3页
2023年南京市秦淮区四校数学八年级第二学期期末达标测试试题含解析_第4页
2023年南京市秦淮区四校数学八年级第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是()A.88B.90C.90.5D.912.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个3.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B.C. D.4.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()A.4B.5C.6D.85.如图1,在矩形中,动点从点出发,沿方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函致图象如图2所示,则矩形的周长是()图1图2A. B. C. D.6.为打击毒品犯罪,我县缉毒警察乘警车,对同时从县城乘汽车出发到A地的两名毒犯实行抓捕,警车比汽车提前15分钟到A地,A地距离县城8千米,警车的平均速度是汽车平均速度的2.5倍,若设汽车的平均速度是每小时x千米,根据题意可列方程为()A.+15= B.=+15C.= D.=7.已知矩形的较短边长为6,对角线相交成60°角,则这个矩形的较长边的长是()A. B. C.9 D.128.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.59.小明做了四道题:;;;;做对的有()A. B. C. D.10.如图,点在正方形外,连接,过点作的垂线交于,若,则下列结论不正确的是()A. B.点到直线的距离为C. D.11.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若,,则的度数是A. B. C. D.12.如图,已知四边形ABCD是平行四边形,若AF、BE分别是、的平分线,,,则EF的长是A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,平行四边形ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=1,求AB的长是___________.14.菱形的两条对角线相交于,若,,则菱形的周长是___.15.如图,AD是△ABC的角平分线,若AB=8,AC=6,则=_____.16.分解因式:______________。17.如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.18.内角和等于外角和2倍的多边形是__________边形.三、解答题(共78分)19.(8分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.(1)求直线和直线的解析式;(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.20.(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.21.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.22.(10分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.23.(10分)已知一次函数y=(1m-1)x+m-1.(1)若此函数图象过原点,则m=________;(1)若此函数图象不经过第二象限,求m的取值范围.24.(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为,EG与CG的位置关系为,请证明你的结论.(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.(3)在图2中,若BC=4,BF=3,连接EC,求的面积.25.(12分)已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.26.分别按下列要求解答:(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.(2)将绕顺时针旋转度得到,画出,则点坐标为__________.(3)在(2)的条件下,求移动的路径长.

参考答案一、选择题(每题4分,共48分)1、B【解析】

先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【详解】将小明所在小组的5个同学的成绩重新排列为:88、90、90、91、97,所以这组数据的中位数为90分,故选B.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、D【解析】

分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.3、B【解析】

根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选B.【点睛】本题考查勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题关键.4、A【解析】正八边形的每个内角为:180°-360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°-270°=90°,∵正方形的每个内角为90°,∴另一个是正方形.∴第三块木板的边数是4.故选A.5、C【解析】

根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.【详解】解:由图形可知,,周长为,故选C.【点睛】本题考查了动点函数图象,利用三角型面积的变化确定R的位置是解题关键.6、D【解析】

设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,根据时间=路程÷速度结合警车比汽车提前小时(15分钟)到A地,即可得出关于x的分式方程,此题得解.【详解】设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,依题意,得:=+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7、B【解析】

根据矩形对角线相等且互相平分的性质和题中的条件易得△AOB为等边三角形,即可得到矩形对角线的长,进而求解即可.【详解】如图:AB=6,∠AOB=60°,∵四边形是矩形,AC,BD是对角线,∴OA=OB=OC=OD=BD=AC,在△AOB中,OA=OB,∠AOB=60°,∴OA=OB=AB=6,BD=2OB=12,∴BC=.故选:B.【点睛】本题主要考查了矩形的性质,勾股定理等内容,熟悉性质是解题的关键.8、B【解析】

过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD.【详解】解:过点D作DH⊥BC交AB于点H,∵EF⊥AC,∴EF∥BC,∴△AFE∽△ACD,∴,∵DH⊥BC,EG⊥EF,∴DH∥EG,∴△AEG∽△ADH,∴,∴∵EF=EG,∴DC=DH,设DH=DC=x,则BD=12-x,又∵△BDH∽△BCA,∴,即,解得:x=4,即CD=4,故选B.【点睛】本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.9、D【解析】

根据无理数的运算法则,逐一计算即可.【详解】,正确;,错误;,错误;,正确;故答案为D.【点睛】此题主要考查无理数的运算,熟练掌握,即可解题.10、B【解析】

A、首先利用已知条件根据边角边可以证明△APD≌△AEB;B、利用全等三角形的性质和对顶角相等即可解答;C、由(1)可得∠BEF=90°,故BE不垂直于AE过点B作BP⊥AE延长线于P,由①得∠AEB=135°所以∠PEB=45°,所以△EPB是等腰Rt△,于是得到结论;D、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD中,AB=AD,∵AF⊥AE,∴∠BAE+∠BAF=90°,又∵∠DAF+∠BAF=∠BAD=90°,∴∠BAE=∠DAF,在△AFD和△AEB中,∴△AFD≌△AEB(SAS),故A正确;∵AE=AF,AF⊥AE,∴△AEF是等腰直角三角形,∴∠AEF=∠AFE=45°,∴∠AEB=∠AFD=180°−45°=135°,∴∠BEF=135°−45°=90°,∴EB⊥ED,故C正确;∵AE=AF=,∴FE=AE=2,在Rt△FBE中,BE=,∴S△APD+S△APB=S△APE+S△BPE,=,故D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°−135°=45°,∴△BEP是等腰直角三角形,∴BP=,即点B到直线AE的距离为,故B错误,故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.11、A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.12、B【解析】

由四边形ABCD是平行四边形,若AF、BE分别是、的平分线,易得与是等腰三角形,继而求得,则可求得答案.【详解】四边形ABCD是平行四边形,,,,,,、BE分别是、的平分线,,,,,,,.故选:B.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质注意证得与是等腰三角形是关键.二、填空题(每题4分,共24分)13、1【解析】

根据已知条件易证四边形ABDE是平行四边形,可得AB=DE=CD,即D是CE的中点,在Rt△CEF中利用30°角直角三角形的性质可求得CE的长,继而求得AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∴AB=CE,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵CF=1,∴CE=2,∴AB=1.故答案为1【点睛】本题考查了平行四边形的判定与性质,正确证得D是CE的中点是关键.14、【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.15、4:3【解析】作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF,===.故答案为4∶3.点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.16、4x(x+1)(x-1)【解析】4x3-4x=4x(x2-1)=4x(x+1)(x-1).故答案为4x(x+1)(x-1).17、【解析】

把点A(﹣3,4)代入y=﹣3x+b求出点B的坐标,然后得到OB=5,利用A的坐标即可求出△AOB的面积.【详解】解:∵点A(﹣3,4)在一次函数y=﹣3x+b的图象上,∴9+b=4,∴b=-5,∵一次函数图象与y轴的交点的纵坐标就是一次函数的常数项上的数,∴点B的坐标为:(0,-5),∴OB=5,而A(﹣3,4),S△AOB=.故答案为:.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.18、六【解析】

设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:

180(n-2)=360×2,

解得:n=6,

故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).三、解答题(共78分)19、(1)y=-x+1,y=x;(2)m=或;(3)S=.【解析】

(1)理由待定系数法即可解决问题;

(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;

(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.【详解】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=-x+1.

设直线OD的解析式为y=mx,则有3m=1,m=,

∴直线OD的解析式为y=x.(2)存在.

理由:如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,

∴|-m+1-|=3,

解得m=或.(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.

设O′C′与x轴交于点E,与直线OD交于点P;

设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).

设直线O′C′的解析式为y=3x+b,

将C′(1+t,3-t)代入得:b=-1t,

∴直线O′C′的解析式为y=3x-1t.∴E(,0).

联立y=3x-1t与y=,解得x=.

∴S=S△OFQ-S△OEP=OF•FQ-OE•PG=(1+t)()-=.【点睛】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.20、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】

待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).21、(1)证明见解析;(2)24【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考点:1.菱形的性质;2..矩形的判定.22、(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;

(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.23、(1)1;(1)-<m≤1.【解析】

(1)把坐标原点代入函数解析式进行计算即可得解;(1)根据图象不在第二象限,k>0,b0列出不等式组求解即可.【详解】(1)∵函数的图象经过原点,∴m-1=0,解得m=1;(1)∵函数的图象不过第二象限,∴,由①得,m>-,由②得,m1,所以,-<m1.【点睛】本题考查了两直线平行的问题,一次函数与系数的关系,一次函数图象上点的坐标特征,综合题但难度不大,熟记一次函数的性质是解题的关键.24、(1)EG=CG,EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中结论仍然成立,理由见解析,点F在AB的左侧时,(1)中的结论仍然成立;(3)S△CEG=.【解析】

(1)过E作EM⊥AD交AD的延长线于M,证明△AME是等腰直角三角形,得出AM=EM=AE=AB,证出DG=AG=AD=AM=EM,得出GM=CD,证明△GEM≌△CGD(SAS),得出EG=CG,∠EGM=∠GCD,证出∠CGE=180°-90°=90°,即可得出EG⊥CG;(2)延长EG至H,使HG=EG,连接DH、CH、CE,证明△EFG≌△HDG(SAS),得出EF=HD,∠EFG=∠HDG,证明△CBE≌△CDH(SAS),得出CE=CH,∠BCE=∠DCH,得出∠ECH=∠BCD=90°,证明△ECH是等腰直角三角形,得出CG=EH=EG,EG⊥CG;延长EG至H,使HG=EG,连接DH、CH、CE,同理可证CG=EH=EG,EG⊥CG;(3)作EM垂直于CB的延长线与M,先求出BM,EM的值,即可根据勾股定理求出CE的长度,从而求出CG的长,即可求出面积.【详解】解:(1)EG=CG,EG⊥CG;理由如下:过E作EM⊥AD交AD的延长线于M,如图1所示:则∠M=90°,∵四边形ABCD是正方形,∴AB=AD=CD,∠BAD=∠D=90°,∴∠BAM=90°,∵△BEF是等腰直角三角形,∴∠BAE=45°,AE=AB,∴∠MAE=45°,∴△AME是等腰直角三角形,∴AM=EM=AE=AB,∵G是DF的中点,∴DG=AG=AD=AM=EM,∴GM=CD,在△GEM和△CGD中,,∴△GEM≌△CGD(SAS),∴EG=CG,∠EGM=∠GCD,∵∠GCD+∠DGC=90°,∴∠EGM+∠DGC=90°,∴∠CGE=180°-90°=90°,∴EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图2所示:∵G是DF的中点,∴FG=DG,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴EF=HD,∠EFG=∠HDG,∵△BEF是等腰直角三角形,∴EF=BE,∠BFE=∠FBE=45°,∴BE=DH,∵四边形ABCD是正方形,∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,∴∠AFD=∠CDG,∴∠AFE=∠CDH=135°,∵∠CBE=90°+45°=135°,∴∠CBE=∠CDH,在△CBE和△CDH中,,∴△CBE≌△CDH(SAS),∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠BCD=90°,∴△ECH是等腰直角三角形,∵EG=HG,∴CG=EH=EG,EG⊥CG;点F在AB的左侧时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图3所示:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论