版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.﹣3x<﹣1的解集是()A.x< B.x<﹣ C.x> D.x>﹣2.直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(-4,0) B.(-1,0) C.(0,2) D.(2,0)3.顺次连接四边形各边中点所得的四边形是()A.平行四边形 B.矩形 C.菱形 D.以上都不对4.如图,菱形的对角线,,则该菱形的面积为()A.50 B.25 C. D.12.55.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.6.关于的方程有实数根,则满足()A. B.且 C.且 D.7.如图,以正方形ABCD的边AB为一边向外作等边三角形ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°8.四边形中,,,,,垂足分别为,则四边形一定是()A.正方形 B.菱形 C.平行四边形 D.矩形9.如图,分别是矩形的边上的点,将四边形沿直线折叠,点与点重合,点落在点处,已知,则的长是()A.4 B.5 C.6 D.710.2019年6月19日,重庆轨道十八号线(原5A线)项目加快建设动员大会在项目土建七标段施工现场矩形,预计改线2020年全面建成,届时有效环节主城南部交通拥堵,全线已完成桩点复测,滩子口站到黄桷坪站区间施工通道等9处工点打围,在此过程中,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了施工通道工点打围。下面能反映该工程施工道路y(米)与时间x(天)的关系的大致图像是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.12.已知函数y=2x+1x≥0xx<0,当x=2时,函数值13.甲、乙两人进行射击比赛,在相同条件下各射击12次,他们的平均成绩各为8环,12次射击成绩的方差分别是:S甲=3,S乙=2.5,成绩较为稳定的是__________.(填“甲”或“乙”)14.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.15.因式分解的结果是____.16.如图,∠A=∠D=90°,请添加一个条件:_____,使得△ABC≌△DCB.17.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.18.平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.三、解答题(共66分)19.(10分)如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.(1)的面积为______;(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.20.(6分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;21.(6分)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.22.(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.23.(8分)在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.24.(8分)关于x的一元二次方程x1xp10有两个实数根x1、x1.(1)求p的取值范围;(1)若,求p的值.25.(10分)如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒().过点作于点,连接、.(1)的长是,的长是;(2)在、的运动过程中,线段与的关系是否发生变化?若不变化,那么线段与是何关系,并给予证明;若变化,请说明理由.(3)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,说明理由.26.(10分)如图,在平面直角坐标系中,的顶点坐标分别,,,以坐标原点为位似中心,在第三象限画出与位似的三角形,使相似比为,并写出所画三角形的顶点坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:将不等式﹣3x<﹣1系数化1得,x>.故选C.考点:解一元一次不等式.2、D【解析】试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).考点:一次函数的性质3、A【解析】试题分析:如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选A.考点:三角形中位线定理.4、B【解析】
根据:菱形面积=对角线乘积的一半,即s=(a×b)÷2.【详解】S=AC×BD÷2=5×10=25.故选B【点睛】本题考核知识点:求菱形面积.解题关键点:记住菱形面积公式.5、A【解析】
设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.6、A【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7、B【解析】
根据等边三角形和正方形的性质,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE,∴∠EAB=60°,AB=AE∴∠EAD=150°,∵正方形ABCD,∴AD=AB∴AE=AD,∴∠AED=∠ADE=15°,∴∠BED=60°-15°=45°,故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.8、C【解析】
根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理可得Rt△ADE≌Rt△CBF,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的判定定理即可得到结论.【详解】证明:∵BE=DF,∴BE−EF=DF−EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL),∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,故选:C.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.9、B【解析】
设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE,所以BE2+BC2=CE2【详解】设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE所以BE2+BC2=CE2所以解得x=5即AE=5故选:B【点睛】考核知识点:矩形的折叠问题.根据勾股定理求解是关键.10、C【解析】
根据题意,该工程中途被迫停工几天,后来加速完成,即可得到图像.【详解】解:根据题意可知,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,则C的图像符合题意;故选择:C.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.二、填空题(每小题3分,共24分)11、1【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.【详解】如图,由题意知,AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=AB2-A故BD=2BO=1,故答案为:1.【点睛】本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.12、5【解析】
根据x的值确定函数解析式代入求y值.【详解】解:因为x=2>0,所以y=2x+1=2×2+1=5故答案为5【点睛】本题考查了函数表达式,正确选择相应自变量范围内的函数表达式是解题的关键.13、乙【解析】
根据方差的意义,比较所给的两个方差的大小即可得出结论.【详解】∵,乙的方差小,∴本题中成绩较为稳定的是乙,故填乙.【点睛】本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.14、y=5x+1.【解析】试题分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.试题解析:根据题意可知y=5x+1.考点:列代数式.15、【解析】
先提取公因式6x2即可.【详解】=.故答案为:.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.16、∠ABC=∠DCB.【解析】
有一个直角∠A=∠D=90°相等,有一个公共边相等,可以加角,还可以加边,都行,这里我们选择加角∠ABC=∠DCB【详解】解:因为∠A=∠D=90°,BC=CB,∠ABC=∠DCB,所以△ABC≌△DCB,故条件成立【点睛】本题主要考查三角形全等17、>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.18、1【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.【详解】点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.故答案为:1.【点睛】本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.三、解答题(共66分)19、(1);(2)【解析】
(1)利用正方形的面积减去三个顶点上三角形的面积即可;(2)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为所求,利用勾股定理求出A′P的长即可.【详解】解:(1)(1)S△ABC=3×3−×2×3−×3×1−×2×1=9−3−−1=故填:;(2)点关于轴对称的点连接,(或点关于轴对称的点连接)与轴的交点即为满足条件的点,(注:点的坐标为)是边长为5和2的矩形的对角线所以即的最小值为.【点睛】本题考查的是作图−应用与设计作图,根据题意作出点A的对称点A′是解答此题的关键.20、见解析【解析】
根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.【详解】∵MN是BD的垂直平分线,
∴OB=OD,∠BON=∠DOM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠OBN=∠ODM
在△BON和△DOM中,,
∴△BON≌△DOM(ASA),
∴BN=MD,
∴四边形BMDN是平行四边形,
∵MN是BD的垂直平分线,
∴MB=MD,
∴平行四边形BMDN是菱形.【点睛】本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.21、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,,∴△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.22、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=·=当a=0时,原式==2.考点:分式的化简求值.23、证明见试题解析.【解析】试题分析:由平行四边形的性质得到BE∥CD,故有∠E=∠2,由于CE平分∠BCD,得到∠1=∠2,故∠1=∠E,故BE=BC,又因为BH⊥BC,由三线合一可得到CH=EH.试题解析:∵在□ABCD中BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).考点:1.平行四边形的性质;2.等腰三角形的判定与性质.24、(1)p;(1)p=1(舍去)p=-2【解析】
(1)根据一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1-2ac的意义得到△≥0,即11-2×1×(p-1)≥0,解不等式即可得到p的取值范围;
(1)根据一元二次方程ax1+bx+c=0(a≠0)的解的定义得到x11-x1+p-1=0,x11-x1+p-1=0,则有x11-x1=-p+1,x11-x1=-p+1,然后把它们整体代入所给等式中得到(-p+1-1)(-p+1-1)=9,解方程求出p,然后满足(1)中的取值范围的p值即为所求.【详解】解:(1)∵方程x1-x+p-1=0有两个实数根x1、x1,
∴△≥0,即11-2×1×(p-1)≥0,解得p≤,
∴p的取值范围为p≤;
(1)∵方程x1-x+p-1=0有两个实数根x1、x1,
∴x11-x1+p-1=0,x11-x1+p-1=0,
∴x11-x1=-p+1,x11-x1=-p+1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市供水供电供气合同3篇
- 2024年度房屋买卖合同:购房人与开发商就房屋买卖所签订的合同3篇
- 2024年企业贷款合同模板一
- 2024全新运输快递合同下载
- 2024年新能源汽车电池技术转让合同
- 2024年国际物流运输服务协议版
- 石家庄医学院新校区建设合同三篇
- 2024企业融资合同
- 2024专业猎头服务招聘合作合同版
- 2024年度人工智能语音助手技术开发与授权合同3篇
- 国企招聘台州玉环市部分国有企业招聘考试真题2023
- 11《百年孤独(节选)》课件高中语文选择性必修上册
- 手术室手术衣
- 砂石料加工场成本控制专项方案
- GB/T 26342-2024国际间遗体转运棺柩
- 2020-2024年上海市春考语文真题试卷汇编含答案
- 高中体育教学教案30篇
- 公文写作培训
- 安全生产法律法规和标准规范管理制度
- 全媒体运营师试题库(含答案)
- 24秋 默写通关训练 语文五年级上册
评论
0/150
提交评论