版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.丁2.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B. C. D.23.如图在中,D、E分别是AB、AC的中点若的周长为16,则的周长为()A.6 B.7 C.8 D.94.如图,正方形的对角线、交于点,以为圆心,以长为半径画弧,交于点,连接,则的度数为()A.45° B.60° C.1.5° D.75°5.如图,把一个含45°角的直角三角尺BEF和个正方形ABCD摆放在起,使三角尺的直角顶点和正方形的顶点B重合,连接DF,DE,M,N分别为DF,EF的中点,连接MA,MN,下列结论错误的是()A.∠ADF=∠CDE B.△DEF为等边三角形C.AM=MN D.AM⊥MN6.下列各组数中,是勾股数的为()A. B.0.6,0.8,1.0C.1,2,3 D.9,40,417.估计的运算结果在哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和78.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n9.如图,在中,,点是的中点,交于点,,则的长为()A. B. C. D.10.用反证法证明命题“四边形中至少有一个角不小于直角”时应假设(
)A.没有一个角大于直角
B.至多有一个角不小于直角C.每一个内角都为锐角
D.至少有一个角大于直角11.以下列各组数为边长,能构成直角三角形的是()A. B. C. D.12.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3二、填空题(每题4分,共24分)13.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.14.如图,在▱ABCD中,若∠A=63°,则∠D=_____.15.如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.16.四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.17.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=2,则菱形ABCD的周长是_____。18.若与最简二次根式能合并成一项,则a=______.三、解答题(共78分)19.(8分)某工厂制作AB两种型号的环保包装盒.已知用3米同样的材料分别制成A型盒的个数比制成B型盒的个数少1个,且制作一个A型盒比制作一个B型盒要多用20%的材料.求制作每个A,B型盒各用多少材料?20.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.21.(8分)我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:某慈善单位欲购买三种类型的门票共张奖励品学兼优的留守学生,设购买种票张,种票张数是种票的倍还多张,种票张,根据以上信息解答下列问题:(1)写出y与x之间的函数关系式;(2)设购票总费用为元,求(元)与(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于张,且节假日通用票至少购买张,有哪几种购票方案?哪种方案费用最少?22.(10分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.23.(10分)如图,在中,,平分,垂直平分于点,若,求的长.24.(10分)如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.25.(12分)先化简,再求值:(,其中。26.如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
参考答案一、选择题(每题4分,共48分)1、A【解析】
比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.【详解】∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,∴,∴成绩最稳定的同学是甲.故选A.【点睛】此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.2、C【解析】
直接利用频率的定义分析得出答案.【详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:故选:C.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.3、C【解析】
根据三角形的中位线定理可以证得DE∥BC,则△ADE∽△ABC,根据相似三角形的性质即可求解【详解】解:∵D、E分别是AB和AC的中点,
∴DE∥BC,且,即,
∴△ADE∽△ABC,
∴∴△ADE的周长是:.故选:C.【点睛】本题考查了三角形中位线定理以及相似三角形的性质定理,理解定理是关键.4、C【解析】
由正方形的性质得出∠CBD=45°,证明△BCE是等腰三角形即可得出∠BCE的度数.【详解】解:∵四边形ABCD是正方形,
∴∠CBD=45°,BC=BA,
∵BE=BA,
∴BE=BC,
∴∠BCE=(180°-45°)÷2=1.5°.故选:C.【点睛】本题考查了正方形的性质、等腰三角形的性质;熟练掌握正方形和等腰三角形的性质进行求解是解决问题的关键.5、B【解析】
连接DE,先根据直角三角形的性质得出AM=DF,再根据△BEF是等腰直角三角形得出AF=CE,由SAS定理得出△ADF≌△CDE,可得∠ADF=∠CDE,DE=DF,再根据点M,N分别为DF,EF的中点,得出MN是△EFD的中位线,故MN=DE,MN∥DE,可得AM=MN,由MN∥DE,可得∠FMN=∠FDE,根据三角形外角性质可得∠AMF=2∠ADM,由∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,可得MA⊥MN,只能得到△DEF是等腰三角形,无法得出是等边三角形,据此即可得出结论.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠C=90°,∵点M是DF的中点,∴AM=DF,∵△BEF是等腰直角三角形,∴BF=BE,∴AF=CE,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE,∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM外角,∴∠AMF=2∠ADM.又∵∠ADM=∠DEC,∴∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN,∵DE=DF,∴△DEF是等腰三角形,无法得出是等边三角形,综上,A、C、D正确,B错误,故选B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,三角形外角的性质,直角三角形斜边中线性质等,综合性较强,熟练掌握和灵活应用相关知识是解题的关键.6、D【解析】
根据勾股数的定义进行分析,从而得到答案.【详解】解:A、不是,因()2+()2≠()2;B、不是,因为它们不是正整数C、不是,因为12+22≠32;D、是,因为92+402=412;且都是正整数.故选:D.【点睛】此题考查勾股定理的逆定理和勾股数的定义,解题关键在于掌握三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.7、C【解析】
先利用夹逼法求得的范围,然后可求得+的大致范围.【详解】∵9<10<16,∴3<<4,∴5<+<6,故选C.【点睛】本题主要考查的是估算无理数的大小,利用夹逼法求得的范围是解题的关键.8、D【解析】
根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.9、C【解析】
连接BE,利用HL说明BC=BD,由于在Rt△CBA中,BA=2BC,得到∠A=30°,在Rt△DEA中,利用∠A的正切值与边的关系,得到AD的长,再计算出AB的长.【详解】解:连接BE,
∵D是AB的中点,
∴BD=AD=AB
∵∠C=∠BDE=90°,
在Rt△BCE和Rt△BDE中,
∵,
∴△BCD≌△BDE,
∴BC=BD=AB.
∴∠A=30°.
∴tanA=
即,
∴AD=3,
∴AB=2AD=1.
故选C.【点睛】本题考查直角三角形的判定、特殊角的三角函数值及锐角三角函数.解题的关键是根据边间关系得出∠A的度数.10、C【解析】
至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.【详解】解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.故选C.【点睛】本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11、C【解析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.故选:C.【点睛】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.12、B【解析】
把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选:B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二、填空题(每题4分,共24分)13、2,0≤x≤2或≤x≤2.【解析】
(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20②由①②得,∴,故≤x≤2符合题意.故答案为0≤x≤2或≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据14、117°【解析】
根据平行线的性质即可解答【详解】ABCD为平行四边形,所以,AB∥DC,所以,∠A+∠D=180°,∠D=180°-63°=117°。【点睛】此题考查平行线的性质,解题关键在于利用同旁内角等于180°15、(-,0)【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-3,1),D′(0,-1),∴有,解得:,∴直线CD′的解析式为y=-x-1.令y=-x-1中y=0,则0=-x-1,解得:x=-,∴点P的坐标为(-,0).故答案为:(-,0).【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.16、30或150【解析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.17、【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【详解】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=1,AC⊥BD,在Rt△AOD中,∴菱形ABCD的周长为.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.18、2【解析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=1.解得a=2.故答案为:2.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题(共78分)19、制作每个A型盒用0.1米材料,制作每个B型盒用0.5米材料.【解析】
设制作每个B型盒用x米材料,则制作每个A型盒用(1+20%)x米材料,根据数量=材料总数÷每个环保包装盒所需材料结合用3米同样的材料分别制成A型盒的个数比制成B型盒的个数少1个,即可得出关于x的分式方程,解方程并经检验后即可得出结论.【详解】设制作每个B型盒用x米材料,则制作每个A型盒用(1+20%)x米材料,依题意得:﹣=1,解得:x=0.5,经检验,x=0.5是所列分式方程的解,且符合题意,∴(1+20%)x=0.1.答:制作每个A型盒用0.1米材料,制作每个B型盒用0.5米材料.【点睛】本题考查分式方程的应用,正确得出题中等量关系是解题关键.20、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1);(2);(3)共有种购票方案:;;;当种票为张,种票张,种票为张时费用最少,最少费用元.【解析】
(1)根据三种门票共购买100张,即可找出x与y之间的函数关系式;(2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,即可找出W(元)与x(张)之间的函数关系式;(3)根据购买A种票不低于24张、C种票至少5张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.【详解】解:根据题意,所以依题意得解得因为整数为所以共有种购票方案,分别为;;而因为所以随的增大而减小,所以当时,即当种票为张,种票张,种票为张时费用最少,最少费用元【点睛】本题考查了一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)根据三种门票共购买100张,找出y与x之间的函数关系式;(2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,找出W与x之间的函数关系式;(3)根据购买A、C两种门票张数的范围,列出关于x的一元一次不等式.22、(1);(2);(3).【解析】
(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的长为.(3)AC=DF;证明:连接AE、CE,如图,∵四边形ABCD是平行四边形,∴AB//DC,∵四边形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四边形DCEF为平行四边形,∴CE=DF,∵四边形ABEF是矩形,∴BF=AE,∵BF=DF,∴DF=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD=BC,在△FAD和△EBC中,∴△FAD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贷款合同保证书模板
- 软件实施与外包服务
- 辣椒购销合同书
- 运动服装批发协议
- 迟到诚意道歉保证书
- 配电工程招投标通知
- 酒店餐饮用品采购协议
- 酒水订购合同模板
- 采购协议未达成
- 重晶石供应商招募书范本
- 不锈钢内衬特氟龙风管系统
- 中国古代建筑欣赏(最全)
- 新生儿高胆红素血症-PPT
- 水平定向钻施工技术培训的讲义课件
- 骆驼的抗沙标配(2020新疆中考说明文阅读试题含答案)
- 铁路客运员(初级)理论考试复习题库汇总(含答案)
- 银行信贷业务中的法律风险防范与控制
- 高中化学-探究亚铁盐和铁盐的性质及转化教学设计学情分析教材分析课后反思
- 二年级道德与法治上册单元作业设计案例
- 空气压缩机技术规范标准
- 铜及铜合金物理冶金基础-相图、紫铜
评论
0/150
提交评论