版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.不等式组的解集是A.x≥8 B.x>2 C.0<x<2 D.2<x≤82.一组数据从小到大排列为1,2,4,x,6,1.这组数据的中位数是5,那么这组数据的众数为(
)A.4
B.5
C.5.5
D.63.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3) B.它的图象经过第一、二、三象限C.当时,y>0 D.y值随x值的增大而增大4.下表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11 B.13,13 C.13,14 D.14,13.55.如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是()A. B. C. D.56.若x>y,则下列式子中错误的是()A.﹣3x>﹣3y B.3x>3y C.x﹣3>y﹣3 D.x+3>y+37.如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是()A.y=x+10 B.y=﹣x+10 C.y=x+20 D.y=﹣x+208.到三角形三个顶点距离相等的点是()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高的交点D.三角形三条边的中线的交点9.下列命题是假命题的是()A.菱形的对角线互相垂直平分B.有一斜边与一直角边对应相等的两直角三角形全等C.有一组邻边相等且垂直的平行四边形是正方形D.对角线相等的四边形是矩形10.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.611.若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是A.3 B.6 C.9 D.1012.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量 B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率 D.了解某一天本校因病缺课的学生数二、填空题(每题4分,共24分)13.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________.14.不等式组的所有整数解的积是___________.15.菱形的两条对角线长分别是6和8,则菱形的边长为_____.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.17.计算的结果等于_______.18.如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.三、解答题(共78分)19.(8分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).(1)求m的值及l1所对应的一次函数表达式;(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.20.(8分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(8分)如图(1),在矩形中,分别是的中点,作射线,连接.(1)请直接写出线段与的数量关系;(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;(3)写出与的数量关系,并证明你的结论.22.(10分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;(1)甲的射击成绩的平均数和方差分别是多少?(2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?23.(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.(10分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形25.(12分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.26.我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,设A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.(1)请填写下表(2)求出yA、yB与x之间的函数解析式;(3)试讨论A、B两村中,哪个村的运费最少;(4)考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.故选D.2、D【解析】分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.详解:根据题意得,(4+x)÷2=5,得x=2,则这组数据的众数为2.故选D.点睛:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.3、A【解析】
根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.【详解】解:当x=﹣1时,y=3,故A选项正确,∵函数y=-2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<,∴C选项错误.故选:A.【点睛】本题考查一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关键.4、B【解析】
众数是在一组数据中出现次数最多的数;中位数是把数据按照从小到大顺序排列之后,当项数为奇数时,中间的数为中位数;当项数为偶数时,中间两个数的平均数为中位数.由此即可解答.【详解】数据13出现了3次,次数最多,这组数据的众数为13;把这组数据按照从小到大顺序排列为11、13、13、13、14、18,13处在第3位和第4位,它们的平均数为13,即这组数据的中位数是13.故选B.【点睛】本题考查了众数及中位数的判定方法,熟知众数及中位数的定义是解决问题的关键.5、D【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.【详解】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2,又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3−S2=8−3=5,故选:D.【点睛】本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.6、A【解析】
根据不等式的基本性质逐一判断即可.【详解】解:∵x>y,∴A、﹣3x<﹣3y,故A错误,B、3x>3y,正确,C、x﹣3>y﹣3,正确,D、x+3>y+3,正确,故答案为:A.【点睛】本题考查了不等式的基本性质,解题的关键是熟知当不等式两边同时乘以一个负数,不等号的方向要改变.7、B【解析】
设点P的坐标为(x,y),根据矩形的性质得到|x|+|y|=10,变形得到答案.【详解】设点P的坐标为(x,y),∵矩形的周长为20,∴|x|+|y|=10,即x+y=10,∴该直线的函数表达式是y=﹣x+10,故选:B.【点睛】本题考查的是一次函数解析式的求法,掌握矩形的性质、灵活运用待定系数法求一次函数解析式是解题的关键.8、A【解析】
根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到线段两个端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.【点睛】本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.9、D【解析】试题分析:根据菱形的性质对A进行判断;根据直角三角形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据矩形的判定方法对D进行判断.解:A、菱形的对角线互相垂直平分,所以A选项为真命题;B、有一斜边与一直角边对应相等的两直角三角形全等,所以B选项为真命题;C、有一组邻边相等且垂直的平行四边形是正方形,所以C选项为真命题;D、对角线相等的平行四边形是矩形,所以D选项为假命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10、C【解析】
先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【详解】解:∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=8-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∴Rt△ABE≌Rt△C′DE(ASA),
∴BE=DE=x,
在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得:x=1,
∴DE的长为1.
故选C.【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.11、D【解析】
方程配方得到结果,即可作出判断.【详解】解:方程,变形得:,配方得:,即,,即,则的值不可能是10,故选:.【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.12、D【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B.了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C.调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D.了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。故选D.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.二、填空题(每题4分,共24分)13、【解析】分析:等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.详解:原来人均单价为,实际人均单价为,那么所列方程为,故答案为:点睛:考查列分式方程;得到人均单价的关系式是解决本题的关键.14、1【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.【详解】由1-2x<3,得:x>-1,
由≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.15、1【解析】
根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为:1.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.16、(22008-1,22008)【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.【详解】∵直线y=x+1和y轴交于A1,∴A1的交点为(0,1)∵四边形A1B1C1O是正方形,∴OC1=OA1=1,把x=1代入直线得y=2,∴A2(1,2)同理A3(3,4)…∴An的坐标为(2n-1-1,2n-1)故A2019的坐标为(22008-1,22008)【点睛】此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.17、2【解析】
先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算18、1【解析】
由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.【详解】∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.故答案为:1.【点睛】本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.三、解答题(共78分)19、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;(2)根据函数图象,结合C点的坐标即可求得.【详解】解:(1)把C(m,3)代入正比例函数y=x,可得3=m,解得m=1,∴C(1,3),∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),∴解得,∴l1的解析式为y=-x+5;(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.【点睛】本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.20、3,2.【解析】
根据比例求出EC,设CH=x,表示出DH,根据折叠可得EH=DH,在Rt△ECH中,利用勾股定理列方程求解即可得到CH.【详解】解:∵BC=9,BE:EC=1:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC1+CH1=EH1.即31+x1=(9﹣x)1,解得x=2,∴CH=2.【点睛】本题考查了翻折变换,正方形的性质,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.21、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.【解析】
(1)由“SAS”可证△ADM≌△BCM,可得MD=MC;(2)由题意可证四边形ADNM是平行四边形,可得AD∥MN,可得EF=FC,MF⊥EC,由线段垂直平分线的性质可得ME=MC;(3)由等腰三角形的性质和平行线的性质可得∠BME=3∠AEM.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠A=∠B=90°,∵点M是AB中点,∴AM=BM,∴△ADM≌△BCM(SAS),∴MD=MC;(2)∵M、N分别是AB、CD的中点,∴AM=BM,CN=DN,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DN=AM=CN=BM,∴四边形ADNM是平行四边形,∴AD∥MN,∴,∠AEC=∠NFC=90°,∴EF=CF,且MF⊥EC,∴ME=MC;(3)∠BME=3∠AEM,证明:∵EM=MC,EF=FC,∴∠EMF=∠FMC,∵AB=2BC,M是AB中点,∴MB=BC,∴∠BMC=∠BCM,∵MN∥AD,AD∥BC,∴AD∥MN∥BC,∴∠AEM=∠EMF,∠FMC=∠BCM,∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,∴∠BME=3∠AEM.【点睛】本题是四边形综合题,考查了平行四边形的判定和性质,矩形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,(2)中证明EF=CF是本题的关键.22、(1)9.8,0.02;(2)应选甲参加比赛.【解析】
(1)根据平均数和方差的定义列式计算可得;(2)根据方差的意义解答即可.【详解】(1)=×(9.7+10+9.6+9.8+9.9)=9.8(环),=×[(9.7﹣9.8)2+(10﹣9.8)2+(9.6﹣9.8)2+(9.8﹣9.8)2+(9.9﹣9.8)2]=0.02(环2);(2)∵甲、乙的平均成绩均为9.8环,而=0.02<=0.32,所以甲的成绩更加稳定一些,则为了夺得金牌,应选甲参加比赛.【点睛】本题考查方差的定义与意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23、(1)25;0.10;(2)补图见解析;(3)200人.【解析】
(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.24、见解析【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.【详解】证明:∵ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠BAF=∠DCE,又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,所以在△ABF和△DCE中,,∴△ABF≌△CDE(SAS),∴BF=DE,同理可证:△ADF≌△CBE(SAS),∴DF=BE,∴四边形BFDE是平行四边形.【点睛】本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国际精密仪器销售合同主要合同细节版
- 2024个人入股分红合作协议
- 二零二四年度城市智能照明系统开发合同2篇
- 2024全新版财务岗位担保协议电子版版
- 江南大学《电路与电子技术》2022-2023学年第一学期期末试卷
- 佳木斯大学《药物色谱分析实验》2021-2022学年第一学期期末试卷
- 2024saas定制化项目销售劳务合同
- 2024商铺招商商铺租赁合同范本
- 2024办学场地租赁合同协议书
- 2024年国际物业管理合同
- DB52∕T 046-2018 贵州省建筑岩土工程技术规范
- 华为研发类员工绩效考核表(PBC模板)
- 超星世界地理尔雅答案 杜德斌
- 病历书写规范pptPPT课件
- GB_T 21944.1-2022碳化硅特种制品 反应烧结碳化硅窑具 第1部分:方梁_(高清-最新版)
- 有机膨润土PPT学习教案
- 北京市东城区2021-2022学年高三上学期期末考试语文试卷答案讲评
- 设备故障率分析资料
- 新华字典汉字拼音首字母大全
- Zabbix运维监控平台解决方案参考模板
- 自动分板机操作指导书
评论
0/150
提交评论