北京市教育院附属中学2023年数学八年级第二学期期末学业质量监测试题含解析_第1页
北京市教育院附属中学2023年数学八年级第二学期期末学业质量监测试题含解析_第2页
北京市教育院附属中学2023年数学八年级第二学期期末学业质量监测试题含解析_第3页
北京市教育院附属中学2023年数学八年级第二学期期末学业质量监测试题含解析_第4页
北京市教育院附属中学2023年数学八年级第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果反比例函数y=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.32.下列不是同类二次根式的是()A. B. C. D.3.若分式有意义,则满足的条件是()A. B. C. D.4.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.45.若在实数范围内有意义,则x的取值范围是()A. B. C. D.x<36.如图,在平行四边形ABCD中,下列结论不一定成立的是()A.∠A+∠B=180° B.∠A=∠CC.AB=DC D.AC⊥BD7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,,=0.48,=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁8.下列x的值中,是不等式x+1>5的解的是()A.﹣2 B.0 C.4 D.69.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是10.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,BC=9,AD是BC边上的高,M、N分别是AB、AC边的中点,DM=5,DN=3,则△ABC的周长是__.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.13.要使分式2x-1有意义,则x14.如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=12BC,若EF=13,则线段AB的长为_____16.如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.17.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).18.如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.三、解答题(共66分)19.(10分)化简:20.(6分)(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图221.(6分)先化简,再求代数式的值,其中.22.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.23.(8分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.24.(8分)化简求值:,其中x=.25.(10分)先化简,再求值:[其中,]26.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【详解】根据题意,得-2=,即2=k-1,解得,k=1.故选D.考点:待定系数法求反比例函数解析式.2、A【解析】

根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A、与不是同类二次根式;B、=与是同类二次根式;C、=2与是同类二次根式;D、=3与是同类二次根式;故选:A.【点睛】本题考查的是同类二次根式的定义,掌握二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式是解题的关键.3、B【解析】

根据分式有意义的条件可得x+1≠0,再解即可.【详解】解:由题意得:x+1≠0,

解得:x≠-1

故选B.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.4、A【解析】

根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=×AC×BD=AB×DH,∴×8×6=5×DH,∴DH=,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.5、B【解析】

根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,3-x≥0,

解得,x≤3,

故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.6、D【解析】

根据平行四边形的性质得到AD//BC、∠A=∠C、AB=DC从而进行判断.【详解】因为四边形ABCD是平行四边形,所以AD//BC、∠A=∠C、AB=DC,(故B、C选项正确,不符合题意)所以∠A+∠B=180°,(故A选项正确,不符合题意).故选:D.【点睛】考查了平行四边形的性质,解题关键是熟记平行四边形的性质.7、D【解析】

根据方差的意义进行判断.【详解】解:∵<<<∴四人中成绩最稳定的是丁.故选:D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8、D【解析】

根据不等式解集的定义即可得出结论.【详解】∵不等式x+1>5的解集是所有大于4的数,∴6是不等式的解.故选D.【点睛】本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.9、D【解析】

要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【详解】在已知样本数据1,1,4,3,5中,平均数是3;

根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.

故选:D.【点睛】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.10、B【解析】

由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【详解】∵菱形ABCD中,∠D=135°,

∴∠BCD=45°,

∵BE⊥CD于E,FG⊥BC于G,

∴△BFG与△BEC是等腰直角三角形,

∵∠GCF=∠ECF,∠CGF=∠CEF=90°,

CF=CF,

∴△CGF≌△CEF(AAS),

∴FG=FE,CG=CE,

设BG=FG=EF=x,

∴BF=x,

∵△BFG的周长为4,

∴x+x+x=4,

∴x=4-2,

∴BE=2,

∴BC=BE=4,

∴菱形ABCD的面积=4×2=8,

故选:B.【点睛】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.二、填空题(每小题3分,共24分)11、1【解析】

由直角三角形斜边上的中线求得AB=2DM,AC=2DN,结合三角形的周长公式解答.【详解】解:∵在△ABC中,AD是BC边上的高,M、N分别是AB、AC边的中点,

∴AB=2DM=10,AC=2DN=6,

又BC=9,

∴△ABC的周长是:AB+AC+BC=10+6+9=1.

故答案是:1.【点睛】本题考查三角形的中线性质,尤其是:直角三角形斜边上的中线等于斜边的一半.12、【解析】

试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.【详解】∵四边形ABCD是菱形,AC=24,BD=10,∴AC⊥BD,AO=OC=AC=12,BO=BD=5,在Rt△AOB中,由勾股定理得:AB=13,∵S菱形ABCD=×AC×BD=AB×DE,∴×24×10=13DE,∴DE=,故答案为.【点睛】本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.13、x≠1【解析】根据题意得:x-1≠0,即x≠1.14、【解析】

过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.【点睛】本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.15、1【解析】

根据三角形中位线定理得到DE=12BC,DE//BC【详解】解:∵点D,E分别是边AB,AC的中点,∴DE=12BC∵CF=1∴DE=CF,又DE//CF,∴四边形DEFC为平行四边形,∴CD=EF=13,∵∠ACB=90°,点D是边AB的中点,∴AB=2CD=26,故答案为:1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、1.【解析】

先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底×高,可求面积。【详解】在Rt△ABC中,AB=10,BC=6,利用勾股定理可得AC=2.根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.故答案为1.【点睛】本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。17、【解析】

过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.【详解】如图,过C作CD⊥AB,∵渔船速度为30海里/h,40min后渔船行至B处∴AB=海里由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,∴∠BCA=180°-120°-30°=30°∴∠BAC=∠BCA∴BC=BA=20海里在Rt△BCD中,∠BCD=30°,∴BD=BC=10海里∴CD=海里故答案为:.【点睛】本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.18、【解析】

根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.【详解】过E作EH⊥CD于点H.∵∠ADG+∠GDH=∠EDH+∠GDH,∴∠ADG=∠EDH.又∵DG=DE,∠DAG=∠DHE.∴△ADG≌△HDE.∴HE=AG.∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.∴在直角△ADG中,AG=,∴EH=AG=2.∴△CDE的面积为CD·EH=××2=.故答案为.【点睛】考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.三、解答题(共66分)19、【解析】

先二次根式化性质和分母有理化和把二次根式为最简二次根式,利用完全平方公式将括号展开,然后合并同类二次根式即可;【详解】解:==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.20、(1)C;(2)①证明见解析;②,1【解析】

试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=1.如图2:∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF==5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图1:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=1,∴DF=,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=1,∴AF′==1.考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21、【解析】

先将括号内式子通分化简,再与右侧式子约分,最后代入求值.【详解】解:原式当时,原式【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22、,-2【解析】

先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x的范围,据此得出x的整数值,继而根据分式有意义的条件得出x的值,代入计算可得.【详解】解:,解不等式组得,-1≤x≤,∴不等式组的整数解为-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论