版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率2.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或133.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132° B.134° C.136° D.138°4.某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班考试成绩的众数是28分C.该班考试成绩的中位数是28分D.该班考试成绩的平均数是28分5.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm21.522.022.523.023.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数 B.加权平均数 C.众数 D.中位数6.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A. B. C. D.7.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2B.a的相反数是2C.|a|>2D.2a<08.对于两组数据A,B,如果sA2>sB2,且,则()A.这两组数据的波动相同 B.数据B的波动小一些C.它们的平均水平不相同 D.数据A的波动小一些9.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.10.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④二、填空题(共7小题,每小题3分,满分21分)11.如图,在中,AB为直径,点C在上,的平分线交于D,则______12.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.13.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.14.分解因式:ab2﹣9a=_____.15.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___16.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____17.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.三、解答题(共7小题,满分69分)18.(10分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.19.(5分)计算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°20.(8分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.①特殊情形:若MP过点A,NP过点D,则=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.21.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.22.(10分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)23.(12分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=23,BF=2,求⊙O的半径.24.(14分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.2、C【解析】试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.解方程x2-6x+8=0得x=2或x=4当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.3、B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.4、D【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故选项D错误,符合题意.故选D.【点睛】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.5、C【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、B【解析】
根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.7、B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.8、B【解析】试题解析:方差越小,波动越小.数据B的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、C【解析】
利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】
由AB为直径,得到,由因为CD平分,所以,这样就可求出.【详解】解:为直径,
,
又平分,
,
.
故答案为1.【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度.12、-3【解析】试题解析:∵即∴原式故答案为13、【解析】
根据勾股定理解答即可.【详解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC===,故答案为:【点睛】此题考查勾股定理,关键是根据勾股定理解答.14、a(b+3)(b﹣3).【解析】
根据提公因式,平方差公式,可得答案.【详解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.15、100°【解析】
由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.【详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.16、【解析】
根据平行线分线段成比例定理解答即可.【详解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案为.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.17、40°【解析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.三、解答题(共7小题,满分69分)18、(1)答案见解析;(2)证明见解析.【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形.理由如下:连接BE,如图,∵六边形ABCDEF为正六边形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.19、1+3.【解析】
先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣)﹣2﹣|﹣2|+2tan60°=﹣1+4﹣(2﹣)+2,=﹣1+4﹣2++2,=1+3.【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.20、(1)①特殊情形:;②类比探究:是定值,理由见解析;(2)或【解析】
(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可.【详解】解:(1),,故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值;(3)①当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,,同理,.则,则;②当时,如图4,,则,,则,,则,故或.【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.21、(1)3+【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=3x,根据AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)•6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)证明见解析;(2)93﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙科版第二册地理下册阶段测试试卷含答案
- 2024年高标准场地租赁协议
- 2025年上外版六年级语文下册月考试卷
- 2025年人教版必修2化学下册月考试卷含答案
- 2025年冀教版选择性必修2生物上册阶段测试试卷
- 二零二五年度企业研发中心场地租赁协议2篇
- 2025年度药品订购与供应合同3篇
- 2025年仁爱科普版高二数学上册阶段测试试卷含答案
- 2024年福建生物工程职业技术学院高职单招数学历年参考题库含答案解析
- 个人承包企业合作协议样本(2024年度)版B版
- 单位档案三合一制度怎么写范文
- 【课件】跨学科实践:探索厨房中的物态变化问题-人教版八年级上册物理
- 房地产企业岗位招聘笔试题题库之四(含答案)营销副总经理
- 某集团下属子公司年度经营绩效管理办法全套
- 2024-2030年中国汽车防撞梁行业发展动态与市场需求研究报告
- 骨科中医护理方案培训计划(2篇)
- 2024年美国X射线荧光光谱仪(XRF)市场现状及上下游分析报告
- 2024年江苏农牧科技职业学院单招职业适应性测试题库必考题
- 食品机械与设备智慧树知到期末考试答案章节答案2024年西北农林科技大学
- 861个CCER备案项目清单
- 直肠脱垂的护理查房
评论
0/150
提交评论