




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省湘潭市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.用列举法表示小于2的自然数正确的是A.{1,0}B.{1,2}C.{1}D.{-1,1,0}
2.A.x=y
B.x=-y
C.D.
3.要得到函数y=sin2x的图像,只需将函数:y=cos(2x-π/4)的图像A.向左平移π/8个单位B.向右平移π/8个单位C.向左平移π/4个单位D.向右平移π/4个单位
4.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
5.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}
6.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
7.A.
B.
C.
D.
8.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
9.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)
10.已知的值()A.
B.
C.
D.
11.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
12.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
13.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<10
14.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250
15.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
16.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
17.己知向量a
=(2,1),b
=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对
18.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
19.A.一B.二C.三D.四
20.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
二、填空题(10题)21.
22.已知点A(5,-3)B(1,5),则点P的坐标是_____.
23.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
24.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
25.
26.
27.
28.
29.抛物线y2=2x的焦点坐标是
。
30.
三、计算题(5题)31.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
32.解不等式4<|1-3x|<7
33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
34.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
35.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、简答题(10题)36.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。
37.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
38.解关于x的不等式
39.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
40.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
41.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
42.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
43.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
44.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
45.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
五、证明题(10题)46.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
47.
48.若x∈(0,1),求证:log3X3<log3X<X3.
49.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
50.己知sin(θ+α)=sin(θ+β),求证:
51.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
52.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
53.△ABC的三边分别为a,b,c,为且,求证∠C=
54.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
六、综合题(2题)56.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
57.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.A
2.D
3.B三角函数图像的性质.将函数y=cos(2x-π/4)向右平移π/8个单位,得到y=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x
4.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
5.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C
6.D
7.C
8.A向量的运算.=(l,2)+(3,4)=(4,6).
9.A
10.A
11.D集合的运算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.
12.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
13.D对数的定义,不等式的计算.由lgx<1得,所以0<x<10.
14.A分层抽样方法.样本抽取比70/3500=1/50例为该校总人数为1500+3500=5000,则=n/5000=1/50,∴n=100.
15.D
16.C直线的两点式方程.点代入验证方程.
17.C
18.B由题可知,f(x)=f(-x),所以函数是偶函数。
19.A
20.D
21.x+y+2=0
22.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).
23.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
24.2基本不等式求最值.由题
25.π/3
26.{-1,0,1,2}
27.-4/5
28.60m
29.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
30.{x|0<x<3}
31.
32.
33.
34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
35.
36.
37.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
38.
39.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
40.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
41.(1)(2)
42.由已知得:由上可解得
43.
44.
45.
46.
47.
48.
49.
∴PD//平面ACE.
50.
51.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
52.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
53.
54.
55.
56.
57.解:(1)斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机控制技术与系统 课件 04 过程通道与人机接口
- 四川国际标榜职业学院《计算机组成及系统结构》2023-2024学年第二学期期末试卷
- 三亚学院《中国近现代艺术思潮》2023-2024学年第一学期期末试卷
- 唐山市迁西县2024-2025学年四年级数学第二学期期末监测模拟试题含解析
- 苏州新区一中2025届高三下学期期末质量调研生物试题含解析
- 上海出版印刷高等专科学校《大学生核心就业能力提升》2023-2024学年第二学期期末试卷
- 湖北城市建设职业技术学院《汉字与中国文化》2023-2024学年第一学期期末试卷
- 河南开封科技传媒学院《Matlab程序设计与应用》2023-2024学年第二学期期末试卷
- 新疆体育职业技术学院《汉语言文学导论》2023-2024学年第二学期期末试卷
- 重庆邮电大学《燃烧与爆炸理论》2023-2024学年第二学期期末试卷
- 2024年漳州市医院招聘考试真题
- 售后技术服务年终总结
- 磷酸铁及磷酸铁锂异物防控管理
- (新版)水利水电工程施工企业“三类人员”安全生产考核题库-(单选多选题库)
- 部编版小学二年级下册语文全册教案
- 2025年兴业银行股份有限公司招聘笔试参考题库含答案解析
- 七年级语文下册(统编版2024)-【新教材解读】义务教育教材内容解读课件
- 冷库工程施工组织设计方案
- 网约配送员培训课件
- 五星出东方利中国-新疆文化网
- 《货币的前世今生》课件
评论
0/150
提交评论