版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山西省长治市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.辊轴支座(又称滚动支座)属于()。
A.柔索约束B.光滑面约束C.光滑圆柱铰链约束D.连杆约束
3.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
4.设函数z=sin(xy2),则等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
5.当α<x<b时,f'(x)<0,f'(x)>0。则在区间(α,b)内曲线段y=f(x)的图形A.A.沿x轴正向下降且为凹B.沿x轴正向下降且为凸C.沿x轴正向上升且为凹D.沿x轴正向上升且为凸
6.A.A.0B.1/2C.1D.∞
7.A.A.2
B.1
C.1/2e
D.
8.A.2B.1C.1/2D.-2
9.
10.设y=2-cosx,则y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
11.设函数y=f(x)的导函数,满足f(-1)=0,当x<-1时,f(x)<0;当x>-1时,f(x)>0.则下列结论肯定正确的是().
A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点
12.已知斜齿轮上A点受到另一齿轮对它作用的捏合力Fn,Fn沿齿廓在接触处的公法线方向,且垂直于过A点的齿面的切面,如图所示,α为压力角,β为斜齿轮的螺旋角。下列关于一些力的计算有误的是()。
A.圆周力FT=Fncosαcosβ
B.径向力Fa=Fncosαcosβ
C.轴向力Fr=Fncosα
D.轴向力Fr=Fnsinα
13.
()A.x2
B.2x2
C.xD.2x
14.A.绝对收敛B.条件收敛C.发散D.无法确定敛散性
15.
16.()。A.sinx+ccosx
B.sinx-xcosx
C.xcosx-sinx
D.-(sinx+xcosx)
17.
18.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
19.下列函数在指定区间上满足罗尔中值定理条件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
20.当x→0时,x2是2x的A.A.低阶无穷小B.等价无穷小C.同阶但不等价无穷小D.高阶无穷小
二、填空题(20题)21.设f(x)=ax3-6ax2+b在区间[-1,2]的最大值为2,最小值为-29,又知a>0,则a,b的取值为______.
22.
23.设f(x)=x(x-1),贝f'(1)=_________.
24.
25.
26.设函数f(x)=x-1/x,则f'(x)=________.
27.
28.
29.设x2为f(x)的一个原函数,则f(x)=_____
30.已知平面π:2x+y-3z+2=0,则过点(0,0,0)且与π垂直的直线方程为______.
31.
32.
33.
34.
35.
36.f(x)=sinx,则f"(x)=_________。
37.
38.
39.
40.
三、计算题(20题)41.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
42.
43.
44.求函数f(x)=x3-3x+1的单调区间和极值.
45.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
46.求曲线在点(1,3)处的切线方程.
47.
48.当x一0时f(x)与sin2x是等价无穷小量,则
49.
50.
51.
52.求微分方程的通解.
53.
54.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
55.证明:
56.求微分方程y"-4y'+4y=e-2x的通解.
57.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
58.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
59.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
60.将f(x)=e-2X展开为x的幂级数.
四、解答题(10题)61.判定y=x-sinx在[0,2π]上的单调性。
62.
(1)切点A的坐标(a,a2).
(2)过切点A的切线方程。
63.
64.
65.
66.
67.
68.
69.
70.
五、高等数学(0题)71.微分方程xdy—ydx=0的通解是________。
六、解答题(0题)72.
参考答案
1.C
2.C
3.A本题考查的知识点为不定积分运算.
可知应选A.
4.D本题考查的知识点为偏导数的运算。由z=sin(xy2),知可知应选D。
5.A由于在(α,b)内f'(x)<0,可知f(x)单调减少。由于f"(x)>0,
可知曲线y=f'(x)在(α,b)内为凹,因此选A。
6.A
7.B
8.A本题考查了等价无穷小的代换的知识点。
9.B解析:
10.D解析:y=2-cosx,则y'=2'-(cosx)'=sinx。因此选D。
11.C本题考查的知识点为极值的第-充分条件.
由f(-1)=0,可知x=-1为f(x)的驻点,当x<-1时f(x)<0;当x>-1时,
f(x)>1,由极值的第-充分条件可知x=-1为f(x)的极小值点,故应选C.
12.C
13.A
14.A
15.A
16.A
17.D解析:
18.A
19.C
20.D
21.
f'(x)=3ax2-12ax,f'(x)=0,则x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因为a>0,所以,f''(0)<0,所以x=0是极值点.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
22.
23.1
24.
25.1/(1-x)2
26.1+1/x2
27.
28.2本题考查了定积分的知识点。
29.由原函数的概念可知
30.
本题考查的知识点为直线的方程和平面与直线的关系.
由于直线与已知平面垂直,可知直线的方向向量s与平面的法向量n平行.可以取s=n=(2,1,-3),又已知直线过点(0,0,0),由直线的标准式方程可知
为所求.
31.
32.
33.
34.e-1/2
35.
36.-sinx
37.2
38.
39.
本题考查的知识点为导数的四则运算.
40.
本题考查的知识点为二阶线性常系数齐次微分方程的求解.
二阶线性常系数齐次微分方程求解的-般步骤为:先写出特征方程,求出特征根,再写出方程的通解.
41.
42.由一阶线性微分方程通解公式有
43.
则
44.函数的定义域为
注意
45.由二重积分物理意义知
46.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
47.
48.由等价无穷小量的定义可知
49.
50.
51.
52.
53.
54.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
55.
56.解:原方程对应的齐次方程为y"-4y'+4y=0,
57.
列表:
说明
58.
59.
60.
61.因为在[02π]内y'=1-cosx≥0可知在[02π]上y=x-sinx单调增加。因为在[0,2π]内,y'=1-cosx≥0,可知在[0,2π]上y=x-sinx单调增加。
62.本题考查的知识点为定积分的几何意义和曲线的切线方程.
α=1.
因此A点的坐标为(1,1).
过A点的切线方程为y一1=2(x一1)或y=2x一1.
本题在利用定积分表示平面图形时,以y为积分变量,以简化运算,这是值得注意的技巧.
63.
64.
65.
66.
67.
68.本题考查的知识点为导数的应用.
单调增加区间为(0,+∞);
单调减少区间为(-∞,0);
极小值为5,极小值点为x=0;
注上述表格填正确,则可得满分.
这个题目包含了利用导数判定函数的单调性;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单次配送合同范例
- 天府新区信息职业学院《纳米集成电路制造概论》2023-2024学年第一学期期末试卷
- 天府新区信息职业学院《计算机程序设计基础》2023-2024学年第一学期期末试卷
- 从化医院饭堂承包合同范例
- 加盟保险合同范例
- 协议车转让合同范例
- 房屋转让三方合同范例
- 小犊牛回收合同范例
- 晨光文具合同范例
- 电力建设服务合同范例
- 2024年全国高考物理电学实验真题(附答案)
- 国有企业合规管理
- 空姐行业前景分析
- 【培训课件】5S培训课程讲义
- 躯体移动障碍的护理措施
- 宠物鲜食品牌设计开题报告
- 预防性维护课件
- 贵州省黔东南州2023-2024学年九年级上学期期末道德与法治试题
- 感动中国人物钱七虎
- 咨询心理学专题题库
- 物业小区物业服务费三方监管实施方案
评论
0/150
提交评论