江苏省睢宁县高级中学2023届高三下学期第六次检测数学试卷含解析_第1页
江苏省睢宁县高级中学2023届高三下学期第六次检测数学试卷含解析_第2页
江苏省睢宁县高级中学2023届高三下学期第六次检测数学试卷含解析_第3页
江苏省睢宁县高级中学2023届高三下学期第六次检测数学试卷含解析_第4页
江苏省睢宁县高级中学2023届高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.2.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.3.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.4.已知实数满足不等式组,则的最小值为()A. B. C. D.5.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.6.函数的图象如图所示,则它的解析式可能是()A. B.C. D.7.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.8.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元9.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.910.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)11.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.若的展开式中的系数为150,则()A.20 B.15 C.10 D.25二、填空题:本题共4小题,每小题5分,共20分。13.动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_________.14.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.15.已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为__________.16.在边长为2的正三角形中,,则的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α118.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.19.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.20.(12分)已知是递增的等差数列,,是方程的根.(1)求的通项公式;(2)求数列的前项和.21.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.22.(10分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.2、C【解析】

由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.3、B【解析】

选B.考点:圆心坐标4、B【解析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.5、B【解析】

利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.6、B【解析】

根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.7、A【解析】

若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.8、A【解析】

根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.9、A【解析】

先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.10、B【解析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。11、C【解析】

根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,

若,则,即成立,

若成立,则,即,

故“”是“”的充要条件,

故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.12、C【解析】

通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将,代入,利用韦达定理,可得,从而可知以为直径的圆经过原点O.【详解】设点,由题意可得,,,可得,设直线的方程为,代入抛物线可得,,,,以AB为直径的圆经过原点.故答案为:(0,0)【点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.14、C【解析】

根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.15、【解析】

设,则,,由知,,,作,垂足为C,则C为的中点,在和中分别求出,进而求出的关系式,即可求出椭圆的离心率.【详解】如图,设,则,,由椭圆定义知,,因为,所以,,作,垂足为C,则C为的中点,在中,因为,所以,在中,由余弦定理可得,,即,解得,所以椭圆的离心率为.故答案为:【点睛】本题考查椭圆的离心率和直线与椭圆的位置关系;利用椭圆的定义,结合焦点三角形和余弦定理是求解本题的关键;属于中档题、常考题型.16、【解析】

建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、A=【解析】

运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单18、(1)(2)【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;

(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19、(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.【解析】

(1)在直角梯形中,根据,,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,,求得平面的一个法向量,再利用线面角公式求解.【详解】(1)证明:在直角梯形中,,,因此为等边三角形,从而,又,由余弦定理得:,∴,即,且折叠后与位置关系不变,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵为等边三角形,为的中点,∴,又∵平面平面,且平面平面,∴平面,取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:则,,则,假设在上存在一点使直线与平面所成角的正弦值为,且,,∵,∴,故,∴,又,该平面的法向量为,,令得,∴,解得或(舍),综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.【点睛】本题主要考查面面垂直的性质定理和向量法研究线面角问题,还考查了转化化归的思想和运算求解的能力,属于中档题.20、(1);(2).【解析】

(1)方程的两根为,由题意得,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前项和公式即可求出.【详解】方程x2-5x+6=0的两根为2,3.由题意得a2=2,a4=3.设数列{an}的公差为d,则a4-a2=2d,故d=,从而得a1=.所以{an}的通项公式为an=n+1.(2)设的前n项和为Sn,由(1)知=,则Sn=++…++,Sn=++…++,两式相减得Sn=+-=+-,所以Sn=2-.考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为,由题意得,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.21、(1);(2)见解析.【解析】

(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论