2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年辽宁省沈阳市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离

2.已知函数f(x)=㏒2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为A.1/3B.3/4C.1/2D.2/3

3.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°

4.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12

5.A.3/5B.-3/5C.4/5D.-4/5

6.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

7.已知集合,则等于()A.

B.

C.

D.

8.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i

9.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

10.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

11.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

12.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0

B.对任意x∈R,都有x2<0

C.存在x0∈R,使得x02≥0

D.不存在x∈R,使得x2<0

13.A.1/4B.1/3C.1/2D.1

14.函数y=-(x-2)|x|的递增区间是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)

15.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/5

16.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

17.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定的时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼()A.120条B.1000条C.130条D.1200条

18.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//β

B.若l//α,l//β,则α//β

C.若α//β,β//γ,则α//γ

D.若α//β,β//γ,则α//γ

19.下列函数为偶函数的是A.

B.

C.

D.

20.A.7.5

B.C.6

21.A.B.C.D.

22.已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c

二、填空题(10题)23.

24.在△ABC中,AB=,A=75°,B=45°,则AC=__________.

25.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.

26.不等式的解集为_____.

27.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.

28.在锐角三角形ABC中,BC=1,B=2A,则=_____.

29.到x轴的距离等于3的点的轨迹方程是_____.

30.

31.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

32.若长方体的长、宽、高分别为1,2,3,则其对角线长为

三、计算题(10题)33.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

35.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

36.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

37.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

39.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

40.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

41.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

42.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

四、简答题(10题)43.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

44.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

45.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

46.证明上是增函数

47.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

48.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

49.求经过点P(2,-3)且横纵截距相等的直线方程

50.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

51.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

52.证明:函数是奇函数

五、解答题(10题)53.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

54.

55.

56.

57.

58.已知椭圆C的重心在坐标原点,两个焦点的坐标分别为F1(4,0),F2(-4,0),且椭圆C上任一点到两焦点的距离和等于10.求:(1)椭圆C的标准方程;(2)设椭圆C上一点M使得直线F1M与直线F2M垂直,求点M的坐标.

59.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?

60.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

61.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

62.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.

六、单选题(0题)63.A.B.C.D.

参考答案

1.B圆与圆的位置关系,两圆相交

2.A几何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]区间长度为1,区间[1,4]长度为3,所求概率为1/3

3.C

4.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=

5.D

6.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

7.B由函数的换算性质可知,f-1(x)=-1/x.

8.A复数的计算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.

9.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.

10.D根据直线与平面垂直的性质定理,D正确。

11.C

12.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,

13.C

14.A

15.B

16.B,故在(0,π/2)是减函数。

17.D抽样分布.设鱼池中大约有鱼M条,则120/M=10/100解得M=1200

18.C

19.A

20.B

21.D

22.B对数值大小的比较.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,则55dc=5a,∴dc=a

23.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

24.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.

25.

26.-1<X<4,

27.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.

28.2

29.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。

30.4.5

31.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

32.

33.

34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

35.

36.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

37.

38.

39.

40.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

41.

42.

43.

44.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

45.由已知得:由上可解得

46.证明:任取且x1<x2∴即∴在是增函数

47.

48.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

49.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

50.

51.

52.证明:∵∴则,此函数为奇函数

53.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论