版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江西省赣州市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.函数的定义域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]
2.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度
3.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23
4.下列函数是奇函数的是A.y=x+3
B.C.D.
5.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1
B.x2/4+y2/3=1
C.x2/2+y2=1
D.y2/2+x2=1
6.下列句子不是命题的是A.
B.
C.
D.
7.不等式组的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
8.设集合={1,2,3,4,5,6,},M={1,3,5},则CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U
9.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8
10.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}
11.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
12.已知logN10=,则N的值是()A.
B.
C.100
D.不确定
13.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
14.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
15.已知集合M={0,1,2,3},N={1,3,4},那么M∩N等于()A.{0}B.{0,1}C.{1,3}D.{0,1,2,3,4}
16.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
17.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°
18.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.9
19.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
20.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2
21.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限
22.A.1B.2C.3D.4
二、填空题(10题)23.执行如图所示的流程图,则输出的k的值为_______.
24.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
25.等差数列{an}中,已知a4=-4,a8=4,则a12=______.
26.函数f(x)=sin2x-cos2x的最小正周期是_____.
27.
28.的值是
。
29.右图是一个算法流程图.若输入x的值为1/16,则输出y的值是____.
30.在△ABC中,AB=,A=75°,B=45°,则AC=__________.
31.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
32.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
三、计算题(10题)33.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
36.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
37.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
39.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
40.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
41.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
42.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
四、简答题(10题)43.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
44.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
45.由三个正数组成的等比数列,他们的倒数和是,求这三个数
46.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
47.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
48.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
49.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
50.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
51.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
52.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
五、解答题(10题)53.
54.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
55.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
56.
57.
58.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.
59.
60.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.
61.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
62.
六、单选题(0题)63.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
参考答案
1.C由题可知,x+1>=0,1-x>0,因此定义域为C。
2.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.
3.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.
4.C
5.A椭圆的标准方程.由题意得,椭圆的焦点在y轴上,且c=l,e=c/a=1/2,故a=2,b=则補圆的标准方程为x2/3+y2/4=1
6.C
7.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。
8.A补集的运算.CuM={2,4,6}.
9.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6
10.A集合的并集.A∪B是找出所有元素写在同一个集合中.
11.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
12.C由题可知:N1/2=10,所以N=100.
13.D
14.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
15.C集合的运算∵M={0,1,2,3},N={1,3,4},∴M∩N={1,3},
16.A
17.B
18.B椭圆的性质.由题意知25-m2=16,解得m2=9,又m>0,所以m=3.
19.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
20.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1
21.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,
22.C
23.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.
24.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
25.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.
26.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
27.12
28.
,
29.-2算法流程图的运算.初始值x=1/16不满足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.
30.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
31.2n-1
32.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
33.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
34.
35.
36.
37.
38.
39.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
40.
41.
42.
43.
44.
45.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
46.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
47.
48.
49.
50.
51.(1)∵
∴又∵等差数列∴∴(2)
52.
53.
54.
55.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红岩课件教学课件
- 教我作文课件教学课件
- 露天作业课件教学课件
- 2024年度玻璃经销合同
- 2024年工程建设项目材料供应协议
- 2024年度生物医药研发与技术合作合同
- 2024年bulk货物运输协议
- 2024年云服务器租赁及托管合同
- 2024幕墙设计合同
- 2024年度虚拟现实技术研发与许可合同
- 浙江省温州市地图矢量PPT模板(图文)
- 上海市建设工程项目管理机构管理人员情况表
- 北师大版二年级数学上册第九单元《除法》知识点梳理复习ppt
- 空气能室外机保养维护记录表
- DB37∕T 5162-2020 装配式混凝土结构钢筋套筒灌浆连接应用技术规程
- 9-2 《第三方过程评估淋蓄水检查内容》(指引)
- 部编版七年级初一语文上册《狼》公开课课件(定稿)
- 2015路面工程讲义(垫层+底基层+基层+面层+联合层+封层、透层与黏层)
- 《现代汉语修辞》PPT课件(完整版)
- TTJCA 0007-2022 住宅室内装饰装修工程施工验收规范
- 构造柱工程施工技术交底
评论
0/150
提交评论