2022年四川省南充市普通高校对口单招数学自考真题(含答案)_第1页
2022年四川省南充市普通高校对口单招数学自考真题(含答案)_第2页
2022年四川省南充市普通高校对口单招数学自考真题(含答案)_第3页
2022年四川省南充市普通高校对口单招数学自考真题(含答案)_第4页
2022年四川省南充市普通高校对口单招数学自考真题(含答案)_第5页
免费预览已结束,剩余27页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省南充市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.A.B.C.D.

2.A.3B.4C.5D.6

3.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定的时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼()A.120条B.1000条C.130条D.1200条

4.A.7.5

B.C.6

5.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

6.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a

7.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8

8.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

9.A.B.C.D.

10.A.(0,4)

B.C.(-2,2)

D.

11.设集合M={1,2,4,5,6},集合N={2,4,6},则M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}

12.A.B.{-1}

C.{0}

D.{1}

13.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11

14.A.B.C.D.

15.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

16.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8

17.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

18.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.

B.

C.

D.

19.若集合A={1,2},集合B={1},则集合A与集合B的关系是()A.

B.A=B

C.B∈A

D.

20.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4

二、填空题(10题)21.10lg2=

22.

23.

24.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.

25.

26.1+3+5+…+(2n-b)=_____.

27.等比数列中,a2=3,a6=6,则a4=_____.

28.

29.算式的值是_____.

30.

三、计算题(10题)31.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

32.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

33.解不等式4<|1-3x|<7

34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

36.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

37.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

38.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

39.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

40.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

四、简答题(10题)41.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

42.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

43.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

44.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

45.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

46.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

47.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

48.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程

49.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

50.求证

五、解答题(10题)51.

52.

53.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

54.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

55.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

56.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

57.

58.

59.

60.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.

六、单选题(0题)61.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法

参考答案

1.A

2.B线性回归方程的计算.将(x,y)代入:y=1+bx,得b=4

3.D抽样分布.设鱼池中大约有鱼M条,则120/M=10/100解得M=1200

4.B

5.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

6.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

7.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2

8.B四种命题的定义.否命题是既否定题设又否定结论.

9.C

10.A

11.D集合的计算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}

12.C

13.B

14.A

15.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。

16.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6

17.C

18.B三角函数的诱导公式化简sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα

19.A由于B中的元素也存在于A,因此B包含于A。

20.C三角函数的运算∵x=4>1,∴y=㏒24=2

21.lg102410lg2=lg1024

22.π/2

23.16

24.±4,

25.(-∞,-2)∪(4,+∞)

26.n2,

27.

,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.

28.-5或3

29.11,因为,所以值为11。

30.

31.

32.

33.

34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

35.

36.

37.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

38.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

39.

40.

41.

42.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

43.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

44.

45.

46.

47.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

48.

49.

50.

51.

52.

53.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

54.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论