版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年甘肃省平凉市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)
2.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.
B.
C.
D.
3.的展开式中,常数项是()A.6B.-6C.4D.-4
4.若102x=25,则10-x等于()A.
B.
C.
D.
5.已知的值()A.
B.
C.
D.
6.下列函数中是奇函数的是A.y=x+3
B.y=x2+1
C.y=x3
D.y=x3+1
7.A.π
B.C.2π
8.cos215°-sin215°=()A.
B.
C.
D.-1/2
9.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1
10.若a>b.则下列各式正确的是A.-a>-b
B.C.D.
11.下列函数为偶函数的是A.
B.
C.
D.
12.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60
13.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π
B.函数f(x)是偶函数
C.函数f(x)是图象关于直线x=π/4对称
D.函数f(x)在区间[0,π/2]上是增函数
14.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15
15.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°
16.A.B.(2,-1)
C.D.
17.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12
B.12
C.6
D.6
18.A.
B.
C.
19.A.2B.3C.4D.5
20.A.(0,4)
B.C.(-2,2)
D.
二、填空题(10题)21.
22._____;_____.
23.若=_____.
24.
25.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
26.椭圆x2/4+y2/3=1的短轴长为___.
27.函数的定义域是_____.
28.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.
29.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
30.
三、计算题(10题)31.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
32.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
33.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
36.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
37.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
38.解不等式4<|1-3x|<7
39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
40.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)41.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
42.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
43.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
44.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
45.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
46.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
47.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
48.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
49.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
50.已知集合求x,y的值
五、解答题(10题)51.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
52.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.
53.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.
54.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.
55.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.
56.
57.
58.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.
59.已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上的一点,且2|F1F2|PF1|+|PF2|.(1)求此椭圆的标准方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
60.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.
六、单选题(0题)61.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
参考答案
1.C
2.A
3.A
4.B
5.A
6.C
7.C
8.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
9.B
10.C
11.A
12.C
13.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,
14.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.
15.B
16.A
17.D
18.C
19.D向量的运算.因为四边形ABCD是平行四边形,
20.A
21.{-1,0,1,2}
22.2
23.
,
24.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
25.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
26.2椭圆的定义.因为b2=3,所以b=短轴长2b=2
27.{x|1<x<5且x≠2},
28.180,
29.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
30.-1
31.
32.
33.
34.
35.
36.
37.
38.
39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
40.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
41.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
42.
43.(1)(2)∴又∴函数是偶函数
44.
∵μ//v∴(2x+1.4)=(2-x,3)得
45.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
46.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
47.(1)(2)
48.
49.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
50.
51.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.
52.
53.
54.(1)设椭圆的方程为x2/a2+y2/b2=1因为e=,所以a2=4b2,又因为椭圆过点M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故椭圆标准方x2/20+y2/5=1(2)将y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2)-20(4m2-20)>0,解得-5<m<5.又由题意可知直线不过M(4,1),所以4+m≠1,m≠-3,所以m的取值范围是(-5,-3)∪(-3,5).
55.(1)如图,在APAD中,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7S与现场管理课件
- 存在管理制度不规范规章制度
- 市场部(销售)胜任力素质模型库
- 福建厦门大同中学2024届高三年级校内模拟数学试题试卷(最后一卷)
- 2024年郑州客运资格专业能力考试题库
- 2024年青海办理客运从业资格证版试题
- 2024年天津客运运输从业资格证模拟考试题
- 2024年海南办理客运从业资格证版试题
- 人教部编版二年级语文上册第13课《寒号鸟》精美课件
- 吉首大学《合唱与合唱指挥1》2021-2022学年第一学期期末试卷
- 含碘对比剂静脉外渗护理管理实践指南
- 儿童免疫性疾病课件
- 牛津译林版五年级上册英语第五单元What do they do全部教案(共5课时)
- 2023年中考语文复习:150个文言实词-课件(共183张PPT)
- ICU患者失禁性皮炎的预防及护理新进展
- 中秋节来历课件
- 架线工程强制性条文执行记录
- 2023版监理规范(含表格)
- 传媒公司签约艺人合同
- 资金集中管理五大模式
- 2023年FURUNOECDISMultipleChoiceTest古野电子海图题库测试题
评论
0/150
提交评论