2018年数学复习专题40空间中的平行关系押题专练文_第1页
2018年数学复习专题40空间中的平行关系押题专练文_第2页
2018年数学复习专题40空间中的平行关系押题专练文_第3页
2018年数学复习专题40空间中的平行关系押题专练文_第4页
2018年数学复习专题40空间中的平行关系押题专练文_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE9-学必求其心得,业必贵于专精专题40空间中的平行关系1.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若α∥β,m∥n,m∥α,则n∥βD.若α⊥γ,β⊥γ,则α∥β答案:B2.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角解析:选A.若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b解析:选C.A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1C.2 D.3解析:选A。对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.5.已知直线a与平面α、β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:选D.设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a∥b,故存在唯一一条直线b与a平行.6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直 B.相交不垂直C.平行 D.重合7.正方体ABCD.A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确的命题是(A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1FD.AE∥平面BC1面BC1F8.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明,④正确,可以以三棱柱为例证明.9.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.解析:设eq\f(DH,DA)=eq\f(GH,AC)=k,∴eq\f(AH,DA)=eq\f(EH,BD)=1-k,∴GH=5k,EH=4(1-k),∴周长=8+2k。又∵0<k<1,∴周长的取值范围为(8,10).答案:(8,10)10.如图所示,ABCD.A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=eq\f(a,3),过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=________.答案:eq\f(2\r(2),3)a11.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D且PA=6,AC=9,PD=8,则BD的长为________.解析:根据题意可得到以下如图两种情况:可求出BD的长分别为eq\f(24,5)或24。答案:24或eq\f(24,5)12.在正四棱柱ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO解析:假设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别为DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,∴平面D1BQ∥平面PAO,故Q满足Q为CC1的中点时,有平面D1BQ∥平面PAO.答案:Q为CC1的中点13.如图E、F、G、H分别是正方体ABCD。A1B1C1D1的棱BC、CC1、C1D1、AA1(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H。证明:(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.14.如图,在三棱柱ABC.A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点解:法一:当AF=3FC时,FE∥平面A1ABB1.证明如下:在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接∵B1E=3EC1,∴EG=eq\f(3,4)A1C1,又AF∥A1C1且AF=eq\f(3,4)A1C1,∴EG∥平面A1ABB1,∵B1E=3EC1,∴BG=3GC,∴FG∥AB,又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1。15.如图,几何体E.ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC。(3)在(2)的条件下,在线段AD上是否存在一点N,使得BN∥面DEC,并说明理由.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以∠BDN=∠CBD,所以DN∥BC。又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC。又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF.所以DM∥平面BEC.(3)存在点N为AD的中点取AD的中点N,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论