




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市徐闻县曲界中学2023年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个图形中,不是以x为自变量的函数的图象是()A. B. C. D.参考答案:C【考点】函数的概念及其构成要素.【分析】根据函数的定义中“定义域内的每一个x都有唯一函数值与之对应”判断.【解答】解:由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.故选C.2.在△ABC中,a2=b2+c2+bc,则A等于()A.60° B.120° C.30° D.150°参考答案:B【考点】HR:余弦定理.【分析】先根据a2=b2+bc+c2,求得bc=﹣(b2+c2﹣a2)代入余弦定理中可求得cosA,进而得解.【解答】解:根据余弦定理可知cosA=∵a2=b2+bc+c2,∴bc=﹣(b2+c2﹣a2),∴cosA=﹣∴A=120°.故选:B.3.要得到函数的图像,只需将函数的图像A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:C试题分析:因为,所以由y=3sin3x图象向左平移个单位得到考点:本题考查正弦函数的图象和性质点评:解决本题的关键是注意平移时,提出x的系数4.算法的三种基本结构是(
)
A.顺序结构、模块结构、条件结构
B.顺序结构、循环结构、模块结构
C.顺序结构、条件结构、循环结构
D.模块结构、条件结构、循环结构参考答案:C5.设m,n是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.4参考答案:A【分析】根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.6.为了得到函数的图象,只需把函数的图象()A、向左平移B、向左平移C、向右平移D、向右平移参考答案:B略7.算法如图,若输入m=210,n=117,则输出的n为()A.2 B.3 C.7 D.11参考答案:B【考点】程序框图.【分析】该题是直到型循环与,先将210除以177取余数,然后将n的值赋给m,将r的值赋给n,再相除取余,直到余数为0,停止循环,输出n的值即可【解答】解:输入m=210,n=177,r=210Mod117=93,不满足r=0,执行循环,m=117,n=93,r=117Mod93=24,不满足r=0,执行循环,m=93,n=24,r=93Mod24=21,不满足r=0,执行循环,m=24,n=21,r=24Mod21=3,不满足r=0,执行循环,m=21,n=3,r=21Mod3=0满足r=0,退出循环,输出n=3.故选B8.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|﹣1<x≤1,x∈N},N={1} D.,参考答案:D【考点】集合的相等.【分析】根据两个集合相等,元素相同,排除A;根据两个集合相等,元素相同,排除B先解集合M,然后判断元素是否相同,排除C先化简集合N,然后根据集合元素的无序性,选择D【解答】解:A:M={π},N={3.14159},因为π≠3.14159,故元素不同,集合也不同,故排除B:M={2,3},N={(2,3)},因为M的元素为2和3,而N的元素为一个点(2,3),故元素不同,集合不同,故排除C:M={x|﹣1<x≤1,x∈N},N={1},由M={x|﹣1<x≤1,x∈N}得,M={0,1},故两个集合不同,故排除D:∵∴=,根据集合元素的无序性可以判断M=N,故选择D故答案为D【点评】本题考查两个集合相等的条件,涉及到元素相同以及集合元素的三个性质:无序性,互异性,确定性,为基础题9.一个几何体的三视图如图所示:俯视图是边长为2的正方形,主视图与左视图是全等的等腰直角三角形(单位长度:cm),则此几何体的全面积是(
)
A.
B.
C.
D.
参考答案:C略10.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=
A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 如图,正六边形的中心为,若,则
▲
(用来表示).参考答案:略12.函数的值域为
参考答案:13.(5分)已知函数f(x)=,若g(x)=f(x)﹣k有两个零点,则实数k的取值范围是
.参考答案:(,1)考点: 函数的零点与方程根的关系.专题: 计算题;函数的性质及应用.分析: 化简确定函数f(x)的单调性与值域,并将函数g(x)的零点个数转化为函数交点的个数.【题文】(5分)判断下列说法:①已知用二分法求方程3x+3x﹣8=0在x∈(1,2)内的近似解过程中得:f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(1.25,1.5)②y=tanx在它的定义域内是增函数.③函数y=的最小正周期为π④函数f(x)=是奇函数⑤已知=(x,2x),=(﹣3x,2),若∠BAC是钝角,则x的取值范围是x<0或x>其中说法正确的是
.【答案】①③【解析】考点: 命题的真假判断与应用.专题: 计算题;阅读型;函数的性质及应用;三角函数的图像与性质.分析: 由零点存在定理,即可判断①;由y=tanx在(kπ﹣,kπ+)(k∈Z)递增,即可判断②;由二倍角的正切公式,及正切函数的周期,即可判断③;判断定义域是否关于原点对称,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,即可判断④;运用向量的夹角为钝角的等价条件为数量积小于0,且不共线,解不等式即可判断⑤.解答: 对于①,由零点存在定理可得,第一次由于f(1)f(1.5)<0,则位于区间(1,1.5),第二次由于f(1.25)f(1.5)<0,则位于(1.25,1.5),则①正确;对于②,y=tanx在(kπ﹣,kπ+)(k∈Z)递增,则②错误;对于③,函数y==tan2x,则函数的最小正周期为π,则③正确;对于④,函数f(x)=,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,则为非奇非偶函数.则④错误;对于⑤,由于=(x,2x),=(﹣3x,2),若∠BAC是钝角,则?<0,且,不共线,则﹣3x2+4x<0,且2x≠﹣6x2,解得x>或x<0且x≠﹣,则⑤错误.综上可得,①③正确.故答案为:①③.点评: 本题考查函数的零点、函数的奇偶性和周期性、单调性的判断,考查平面向量的夹角为钝角的条件,考查运算能力,属于基础题和易错题.14.已知用斜二测画法画得得正方形得直观图的面积为,那么原正方形得面积为
参考答案:72略15.函数(常数)为偶函数且在(0,+∞)是减函数,则
.参考答案:16.已知Rt△ABC三个顶点的坐标分别为A(t,0),B(1,2),C(0,3),则实数t的值为.参考答案:﹣1或﹣3【考点】两条直线垂直与倾斜角、斜率的关系;直线的斜率.【专题】计算题;转化思想;向量法;直线与圆.【分析】由题意画出图形,分类利用向量数量积为0求得实数t的值.【解答】解:如图,由图可知,角B或角C为直角.当B为直角时,,,由得,﹣(t﹣1)﹣2=0,即t=﹣1;当C为直角时,,由得,t+3=0,即t=﹣3.故答案为:﹣1或﹣3.【点评】本题考查两直线垂直的关系,考查了向量数量积判断两直线的垂直,体现了分类讨论的数学思想方法,是基础题.17.“”是“有且仅有整数解”的__________条件。参考答案:必要条件
解析:左到右来看:“过不去”,但是“回得来”三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C的方程为:。(1)求圆心C的坐标;(2)求实数的取值范围;(3)是否存在实数,使直线与圆C相交于M、N两点,且(O为坐标原点)若存在,求出的值,若不存在说明理由。参考答案:,所以,因为,,因为OM,所以KOMKON=,故有+=0,代入有,因为满足,所以存在,满足题中条件。19.已知函数在R上的最大值为3.(1)求m的值及函数f(x)的单调递增区间;(2)若锐角△ABC中角A、B、C所对的边分别为a、b、c,且,求的取值范围.参考答案:(1),函数的单调递增区间为;(2).【分析】(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以
因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以
因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.20.小王大学毕业后决定利用所学知识自主创业,在一块矩形的空地上办起了养殖场,如图所示,四边形ABCD为矩形,米,米,现为了养殖需要,在养殖场内要建造一个蓄水池,小王因地制宜,建造了一个三角形形状的蓄水池,其中顶点分别为A,E,F(E,F两点在线段BD上),且,设.(1)请将蓄水池的面积表示为关于角的函数形式,并写出该函数的定义域;(2)当角为何值时,蓄水池的面积最大?并求出此最大值.
参考答案:(1)因为,,所以,在中,米,米,所以,中,在中由正弦定理得:所以,在中,由正弦定理得:所以,则的面积,,
......7分(2)因为,所以所以则的最小值为所以当时,取最大值为答:当时,蓄水池的面积最大,最大值为……...………12分21.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.(Ⅰ)证明:NE⊥PD;(Ⅱ)求三棱锥E﹣PBC的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(Ⅰ)连结AC与BD交于点F,则F为BD的中点,连结NF,由三角形中位线定理可得NF∥PD,,在结合已知得四边形NFCE为平行四边形,得到NE∥AC.再由PD⊥平面ABCD,得AC⊥PD,从而证得NE⊥PD;(Ⅱ)由PD⊥平面ABCD,得平面PDCE⊥平面ABCD,可得BC⊥CD,则BC⊥平面PDCE.然后利用等积法把三棱锥E﹣PBC的体积转化为B﹣PEC的体积求解.【解答】(Ⅰ)证明:连结AC与BD交于点F,则F为BD的中点,连结NF,∵N为线段PB的中点,∴NF∥PD,且,又EC∥PD且,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE∥FC,即NE∥AC.又∵PD⊥平面ABCD,AC?面ABCD,∴AC⊥PD,∵NE∥AC,∴NE⊥PD;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025财务人员合同书范本
- 2025年上海企业(事业)单位劳动合同
- 2025劳动合同书(示范文本)
- 2025二手房买卖合同全文版
- 2025餐厅临时厨师劳动合同
- 2025水利工程建筑施工合同(范本)
- 《猫咪与花园:互动教学课件》
- 2025标准别墅装修合同范本
- 大学生职业规划190
- 申请甲方尽快签合同协议
- 攀枝花2025年四川攀枝花市东区事业单位春季引才(4人)笔试历年参考题库附带答案详解
- 钢结构工程数字化
- 2025年《保障中小企业款项支付条例》学习解读课件
- 西南名校联盟2025届“3 3 3”高考备考诊断性联考(二)政治-答案
- 2024年湖南常德烟草机械有限责任公司招聘笔试真题
- 2025-2030中国光学级PMMA行业现状调查与前景策略分析研究报告
- 2024年四川眉山中考满分作文《时光剪影中的那抹温柔》
- 25春国家开放大学《管理英语3》形考任务(综合测试+写作+学习表现)参考答案
- 2025年反洗钱法 试题及答案
- 桥梁工程施工方案及技术措施专项方案
- 2025年安徽江东控股集团有限责任公司招聘笔试参考题库含答案解析
评论
0/150
提交评论