下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市阳春春城中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是上的增函数,令,则是上的(
)A.增函数
B.减函数
C.先增后减
D.先减后增参考答案:B2.方程的实数解所在的区间是(
)
B.
C.
D.参考答案:C略3.函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1) B.(1,+∞) C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)参考答案:C【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.4.全集U=R,集合A={1,2,3,4,5},B=[2,+∞),则图中阴影部分所表示的集合为(
)A.{1}
B.{0,1}
C.{1,2}
D.{0,1,2}参考答案:A5.过点的直线与垂直,则的值为A.
B.
C.
D.参考答案:C6.已知,,则的值为(
)A.
B.
C.
D.参考答案:C7.
=
A、
B、
C、
D、参考答案:A略8.设实数满足约束条件
,若目标函数的最大值为12,则的最小值为
(
)A.
B.
C.
D.4参考答案:A略9.如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连接AC,则在四面体ABCD的四个面所在平面中,互相垂直的平面的对数为()(A)1 (B)2(C)3 (D)4参考答案:C10.下列说法:①2017年考入清华大学的性格外向的学生能组成一个集合;②空集;③数集中,实数x的取值范围是。其中正确的个数是(
)A、3
B、2
C、1
D、0参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知且,则的值是
.参考答案:
12.已知集合A={y|y=x2﹣2x﹣3},集合B={y|y=﹣x2+2x+13},则A∩B= .参考答案:[﹣4,14]【考点】交集及其运算.【专题】计算题;集合.【分析】求出A与B中y的范围确定出A与B,找出两集合的交集即可.【解答】解:由A中y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4≥﹣4,得到A=[﹣4,+∞);由B中y=﹣x2+2x+13=﹣(x﹣1)2+14≤14,得到B=(﹣∞,14],则A∩B=[﹣4,14],故答案为:[﹣4,14]【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.13.{an}为等比数列,若,则an=_______.参考答案:【分析】将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。14.如果a∩b=M,a∥平面β,则b与β的位置关系是
.参考答案:平行或相交【考点】LP:空间中直线与平面之间的位置关系.【分析】对a,b确定的平面α与β的关系进行讨论得出结论.【解答】解:设a,b确定的平面为α,若α∥β,则b∥β,若α与β相交,则b与β相交,故答案为:平行或相交.14.数列{an}的前n项的和Sn=3n2+n+1,则此数列的通项公式.【答案】【解析】【考点】8H:数列递推式.【分析】首先根据Sn=3n2+n+1求出a1的值,然后根据an=Sn﹣Sn﹣1求出当n≥时数列的递推关系式,最后计算a1是否满足该关系式.【解答】解:当n=1时,a1=5,当n≥2时,an=Sn﹣Sn﹣1=3n2+n+1﹣3(n﹣1)2﹣n+1﹣1=6n﹣2,故数列的通项公式为,故答案为.15.已知函数f(x)=则f(f())=.参考答案:【考点】函数的值.【分析】由此得f()==﹣2,由此能求出f(f()).【解答】解:∵函数f(x)=,∴f()==﹣2,f(f())=f(﹣2)=3﹣2=.故答案为:.16.如图,给出幂函数在第一象限内的图象,取四个值,则相应于曲线的依次为_.参考答案:17.若圆锥的正视图是正三角形,则它的侧面积是底面积的
倍.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知△ABC的面积S满足,且,设的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=sin2θ+2sinθ·cosθ+3cos2θ的最小值.参考答案:19.记Sn为等差数列{an}的前n项和,已知.(1)求{an}的通项公式(2)求Sn,并求Sn的最小值参考答案:(1);(2),最小值-30.【分析】(1)设等差数列的公差为,根据题意求出,进而可得出通项公式;(2)根据等差数列的前项和公式先求出,再由得到范围,进而可得出结果.【详解】(1)因为数列为等差数列,设公差为,由可得,即,所以;(2)因为为等差数列的前项和,所以,由得,所以当时,取最小值,且最小值为.【点睛】本题主要考查等差数列,熟记通项公式以及前项和公式即可,属于常考题型.20.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差的情况与患感冒就诊的人数,得到如下资料:日期1月10号2月10号3月10号4月10号5月10号6月10号昼夜温差x(℃)1011131286就诊人数y(人)222529261612
该兴趣小组确定的研究方案是先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选出的2组数据进行检验.(1)若选取的是1月和6月的两组数据,请根据2月至5月的数据求出y关x于的线性回归方程;(2)若由线性回归方程得到的估计数,与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问:该小组所得的线性回归方程是否理想?附;参考答案:(1);(2)该小组所得线性回归方程是理想的.分析:(1)先求均值,代入公式求,根据求,(2)根据线性回归方程得到的估计数据,再与所选出的检验数据的作差,与2比较,根据结果作判断.详解:(1)由数据求得=11,=24,由公式求得b=,再由a=-b=-,得y关于x的线性回归方程为=x-.(2)当x=10时,=,|-22|<2;同样,当x=6时,=,|-12|<2,所以,该小组所得线性回归方程是理想的.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.21.f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及D中的任意两数x1,x2,恒有f(αx1+(1﹣α)x2)≤αf(x1)+(1﹣α)f(x2),则称f(x)为定义在D上的C函数.(1)试判断函数f1(x)=x2,中哪些是各自定义域上的C函数,并说明理由;(2)若f(x)是定义域为R的函数且最小正周期为T,试证明f(x)不是R上的C函数.参考答案:(1)是C函数,不是C函数,理由见解析;(2)见解析【分析】(1)根据函数的新定义证明f1(x)=x2是C函数,再举反例得到不是C函数,得到答案.(2)假设f(x)是R上的C函数,若存在m<n且m,n∈[0,T),使得f(m)≠f(n,讨论f(m)<f(n)和f(m)>f(n)两种情况得到证明.【详解】(1)对任意实数x1,x2及α∈(0,1),有f1(αx1+(1﹣α)x2)﹣αf1(x1)﹣(1﹣α)f1(x2)=(αx1+(1﹣α)x2)2﹣αx12﹣(1﹣α)x22=﹣α(1﹣α)x12﹣α(1﹣α)x22+2α(1﹣α)x1x2=﹣α(1﹣α)(x1﹣x2)2≤0,即f1(αx1+(1﹣α)x2)≤αf1(x1)+(1﹣α)f1(x2),∴f1(x)=x2是C函数;不是C函数,说明如下(举反例):取x1=﹣3,x2=﹣1,α,则f2(αx1+(1﹣α)x2)﹣αf2(x1)﹣(1﹣α)f2(x2)=f2(﹣2)f2(﹣3)f2(﹣1)0,即f2(αx1+(1﹣α)x2)>αf2(x1)+(1﹣α)f2(x2),∴不是C函数;(2)假设f(x)是R上的C函数,若存在m<n且m,n∈[0,T),使得f(m)≠f(n).(i)若f(m)<f(n),记x1=m,x2=m+T,α=1,则0<α<1,且n=αx1+(1﹣α)x2,那么f(n)=f(αx1+(1﹣α)x2)≤αf(x1)+(1﹣α)f(x2)=αf(m)+(1﹣α)f(m+T)=f(m),这与f(m)<f(n)矛盾;(ii)若f(m)>f(n),记x1=n,x2=n﹣T,α=1,同理也可得到矛盾;∴f(x)在[0,T)上是常数函数,又因为f(x)是周期为T的函数,所以f(x)在上是常数函数,这与f(x)的最小正周期为T矛盾.所以f(x)不是R上的C函数.【点睛】本题考查了函数的新定义,意在考查学生的理解能力和综合应用能力.22.在平面直角坐标系中,直线的参数方程为(为参数),它与曲线C:交于A、B两点.(1)求|AB|的长;(2)以为极点,轴的正半轴为极轴建立极坐标系,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济宁学院《体育课篮球》2021-2022学年第一学期期末试卷
- 生产文员工作总结
- 安全生产常识 第3版 课件 第三章 作业现场安全管理
- 二零二四年度文化艺术活动合作合同2篇
- 2024年小学六年级班主任工作总结年度范本
- 二零二四年智能城市安防系统建设合同2篇
- 翻译三级笔译综合能力模拟38
- 护理职业发展演讲
- 2024年度版权转让合同标的价款支付和权益变更3篇
- 贸易销售培训
- 地震课件教学课件
- 药学部主任竞聘述职报告
- DB3205-T 1126-2024非物质文化遗产档案建设与管理规范
- 2024年天然气管道维护与输送合同
- 【人教】第三次月考卷01【U1-U9】
- 24.2.1 点和圆的位置关系 课件 2024-2025学年人教版数学九年级
- 天津市红桥区2024-2025学年八年级上学期期中英语试题(带答案)
- 2024-2025年全国《保安员》岗位工作职责资格知识考试题库与答案
- 学生自主管理班级制度
- 浙江省宁波市2023-2024学年高一上学期期末考试政治试卷(含答案)
- 学校文艺汇演舞台设备方案
评论
0/150
提交评论