广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析_第1页
广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析_第2页
广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析_第3页
广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析_第4页
广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市南山实验学校2021-2022学年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=x2,g(x)=﹣1nx,g'(x)为g(x)的导函数.若存在直线l同为函数f(x)与g'(x)的切线,则直线l的斜率为()A. B.2 C.4 D.参考答案:C【考点】6H:利用导数研究曲线上某点切线方程.【分析】分别设出直线l与两个函数所对应曲线的切点,求出切线方程,由两切线系数相等列式求出切点横坐标,则答案可求.【解答】解:由g(x)=﹣1nx,得g'(x)=﹣,设直线l与f(x)的切点为(),则f′(x1)=2x1,∴直线l的方程为y﹣,即;再设l与g'(x)的切点为(),则,∴直线l的方程为,即.∴,解得x1=2.∴直线l的斜率为2x1=4.故选:C.2.设函数,,若实数a、b满足,,则(

)A. B. C. D.参考答案:D【分析】确定函数单调递增,且,计算得到,再代入计算比较大小关系.【详解】,,故,函数单调递增.,,即.,故或(舍去),故,,故.故选:D.【点睛】本题考查了根据导数判断单调性,零点存在定理,意在考查学生的综合应用能力.3.已知函数f(x)=(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是()A.[,]∪{} B.[,)∪{} C.[,]∪{} D.[,)∪{}参考答案:D【考点】5B:分段函数的应用.【分析】若函数f(x)=(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则函数y=logax与y=2|x﹣5|﹣2在[3,7]上有且只有一个交点,解得实数a的取值范围.【解答】解:∵函数f(x)=(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,∴函数y=logax,与y=2|x﹣5|﹣2在[3,7]上有且只有一个交点,当对数函数的图象过(5,﹣2)点时,由loga5=﹣2,解得a=;当对数函数的图象过(3,2)点时,由loga3=2,解得a=;当对数函数的图象过(7,2)点时,由loga7=2,解得a=.故a∈[,)∪{},故选:D.4.为了得到函数的图象,只需把函数的图象

()A.向上平移一个单位

B.向下平移一个单位C.向左平移一个单位

D.向右平移一个单位参考答案:D5.若圆的半径为3,单位向量所在的直线与圆相切于定点,点是圆上的动点,则的最大值为

.参考答案:略6.在△ABC中,若sin2(B+C)+cos2B+cos2C+sinBsinC≥2,则角A的取值范围是()A. B.C. D.参考答案:C【考点】GI:三角函数的化简求值.【分析】先利用正弦定理把不等式中正弦的值转化成边,进而代入到余弦定理公式中求得cosA的范围,进而求得A的范围.【解答】解:sin2(B+C)+cos2B+cos2C+sinBsinC≥2?sin2A≤sin2B+sin2C﹣sinBsinC,由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC,∵sin2A≤sin2B+sin2C﹣sinBsinC,∴a2≤b2+c2﹣bc,∴bc≤b2+c2﹣a2∴cosA=≥,∴A≤,∵A>0,∴A的取值范围是(0,]故选:C.7.一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为A.长方形; B.直角三角形; C.圆; D.椭圆.

参考答案:C略8.若实数满足不等式组,且的最小值等于,则实数的值等于(

)A. B. C.

D.参考答案:A【知识点】简单的线性规划问题E5由z=y-2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,

由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最小值为-2,即y-2x=-2,由,解得,即A(1,0),

点A也在直线x+y+m=0上,则m=-1,故选:A【思路点拨】作出不等式组对应的平面区域,利用z=y-2x的最小值等于-2,结合数形结合即可得到结论.9.若,则(

)A.4036

B.2018

C.-2018

D.-4036参考答案:D10.设集合,则(

)A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为

。参考答案:本题考查了椭圆的定义、标准方程及离心率公式,难度较小.设椭圆方程为,因的周长为16,由得椭圆的定义可知a=4,又离心率为且,从而得,所以椭圆方程为.12.若向量满足,则=

.参考答案:013.点P是曲线y=x2﹣lnx上任意一点,则点P到直线x﹣y﹣4=0的距离的最小值是

.参考答案:【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用.【分析】求出平行于直线x﹣y﹣4=0且与曲线y=x2﹣lnx相切的切点坐标,再利用点到直线的距离公式可得结论.【解答】解:设P(x,y),则y′=2x﹣(x>0)令2x﹣=1,则(x﹣1)(2x+1)=0,∵x>0,∴x=1∴y=1,即平行于直线y=x+2且与曲线y=x2﹣lnx相切的切点坐标为(1,1)由点到直线的距离公式可得点P到直线x﹣y﹣4=0的距离的最小值d==.故答案为:.【点评】本题考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化的数学思想.14.过坐标原点的直线l与圆C:x2+(y-2)2=2相交于A,B两点,且△ACB为等腰直角三角形,则直线l的方程为

参考答案:15.函数y=tan(x﹣)的单调递增区间是.参考答案:(﹣+kπ,+kπ),k∈Z考点: 正切函数的图象.专题: 三角函数的图像与性质.分析: 根据正切函数的图象与性质,即可求出函数y=tan(x﹣)的单调递增区间.解答: 解:根据正切函数的图象与性质,令﹣+kπ<x﹣<+kπ,k∈Z;得:﹣+kπ<x<+kπ,k∈Z,∴函数y=tan(x﹣)的单调递增区间是(﹣+kπ,+kπ),k∈Z.故答案为:(﹣+kπ,+kπ),k∈Z.点评: 本题考查了正切函数的图象与性质的应用问题,解题时应利用正切函数的图象与性质,列出不等式,求出解集来.16.已知函数y=f(x)是R上的偶函数,对于x都有f(x+6)=f(x)+f(3)成立,且f(-4)=-2,当x,x[0,3],且xx时,都有。则给出下列命题:(1)f(2008)=-2;

(2)函数y=f(x)图象的一条对称由为x=-6;(3)函数y=f(x)在[-9,-6]上为减函数;

(4)方程f(x)=0在[-9,9]上有4个根;其中所有正确命题的题号为

参考答案:答案:(1)(2)(3)(4)17.已知分别是△ABC三个内角A,B,C所对的边,若,A+C=2B,则sinA=____参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)(2015?淄博一模)某数学兴趣小组的学生全部参加了“代数”和“几何”两个科目的考试,成绩分为A,B,C,D,E五个等级,成绩数据统计如下图所示,其中“代数”科目的成绩为B的考生有20人.(Ⅰ)求该小组同学中“几何”科目成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分、3分、2分、1分,求该小组考生“代数”科目的平均分;(Ⅲ)已知参加本次考试的同学中,恰有4人的两科成绩均为A,在至少一科成绩为A的考生中,随机抽取两人进行座谈交流,求这两人的两科成绩均为A的概率.参考答案:【考点】:列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】:概率与统计.【分析】:(Ⅰ)易得小组共80人,可得“几何”科目成绩为A的人数为80×(1﹣0.375﹣0.375﹣0.15﹣0.025)=6;(Ⅱ)由平均数的定义可得平均分为:1×0.2+2×0.1+3×0.375+4×0.25+5×0.075=2.9;(Ⅲ)记得到成绩为A的8人编号为1﹣8,其中1﹣4号时两科成绩等级都是A的同学,列举可得总的基本事件数共28个,其中两人的两科成绩均为A的共6个,由概率公式可得.解:(Ⅰ)∵“代数”科目的成绩为B的考生有20,∴该小组有20÷0.25=80(人)∴该小组同学中“几何”科目成绩为A的人数为80×(1﹣0.375﹣0.375﹣0.15﹣0.025)=80×0.075=6(人);(Ⅱ)∵等级A,B,C,D,E分别对应5分、3分、2分、1分,∴该小组考生“代数”科目的平均分为:1×0.2+2×0.1+3×0.375+4×0.25+5×0.075=2.9;(Ⅲ)∵两科考试中共有12人次得分等级为A,又恰有4人两科成绩等级均为A,∴还有4人有且只有一个科目得分等级为A,记得到成绩为A的8人编号为1﹣8,其中1﹣4号时两科成绩等级都是A的同学,则在至少一科成绩为A的考生中,随机抽取两人进行座谈交流,构成的基本事件有:(1,2)(1,3)(1,4)(1,5)(1,6)(1,7)(1,8),(2,3)(2,4)(2,5)(2,6)(2,7)(2,8),(3,4)(3,5)(3,6)(3,7)(3,8),(4,5),(4,6)(4,7)(4,8),(5,6)(5,7)(5,8),(6,7)(6,8)共28个,其中两人的两科成绩均为A的为(1,2)(1,3)(1,4),(2,3)(2,4),(3,4)共6个,∴所求概率为P==【点评】:本题考查列举法求基本事件数及事件发生的概率,涉及分布直方图,属基础题.19.如图,四棱锥P﹣ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.(Ⅰ)求证:AC⊥PD;(Ⅱ)在线段PA上,是否存在点E,使BE∥平面PCD?若存在,求的值;若不存在,请说明理由.参考答案:【考点】直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)利用面面垂直的性质定理即可证明;(II)线段PA上,存在点E,使BE∥平面PCD.在△PAD中,分别取PA、PD靠近点P的三等分点E、F,连接EF.由平行线分线段成比例定理在三角形中的应用,即可得到EF∥AD,.利用已知条件即可得到,得到四边形BCFE为平行四边形,再利用线面平行的判定定理即可证明.【解答】(Ⅰ)证明:∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,∴AC⊥平面PCD,∵PD?平面PCD,∴AC⊥PD.

(Ⅱ)线段PA上,存在点E,使BE∥平面PCD.下面给出证明:∵AD=3,∴在△PAD中,分别取PA、PD靠近点P的三等分点E、F,连接EF.∵,∴EF∥AD,.又∵BC∥AD,∴BC∥EF,且BC=EF,∴四边形BCFE是平行四边形,∴BE∥CF,BE?平面PCD,CF?平面PCD,∴BE∥平面PCD.【点评】熟练掌握面面垂直的性质定理、平行线分线段成比例定理在三角形中的应用、平行四边形的判定和性质定理、线面平行的判定定理是解题的关键.20.(14分)如图,函数y=2sin(π+φ),x∈R,(其中0≤φ≤)的图象与y轴交于点(0,1).(Ⅰ)求φ的值;(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论