广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析_第1页
广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析_第2页
广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析_第3页
广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析_第4页
广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市澄初级中学2021-2022学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设AB=6,在线段AB上任取两点(端点A、B除外),将线段AB分成了三条线段,(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.参考答案:【考点】CB:古典概型及其概率计算公式;CF:几何概型.【分析】(1)本题是一个古典概型,若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段为2,2,2时能构成三角形,得到概率.(2)本题是一个几何概型,设出变量,写出全部结果所构成的区域,和满足条件的事件对应的区域,注意整理三条线段能组成三角形的条件,做出面积,做比值得到概率.【解答】解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;1,3,2;1,4,1;2,1,3;2,2,2;2,3,1;3,1,2;3,2,1;4,1,1共10种情况,其中只有三条线段为2,2,2时能构成三角形则构成三角形的概率p=.(2)由题意知本题是一个几何概型设其中两条线段长度分别为x,y,则第三条线段长度为6﹣x﹣y,则全部结果所构成的区域为:0<x<6,0<y<6,0<6﹣x﹣y<6,即为0<x<6,0<y<6,0<x+y<6所表示的平面区域为三角形OAB;若三条线段x,y,6﹣x﹣y,能构成三角形,则还要满足,即为,所表示的平面区域为三角形DEF,由几何概型知所求的概率为:P==2.对于不等式,某同学应用数学归纳法的证明过程如下:(1)当时,,不等式成立;(2)假设当时,不等式成立,即,即当时,,∴当时,不等式成立,则上述证法(

)A.过程全部正确

B.验证不正确C.归纳假设不正确

D.从到的推理不正确参考答案:D点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可.(2)在用数学归纳法证明问题的过程中,要注意从k到k+1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.3.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的线性回归方程为()A.y=x+1 B.y=x+2 C.y=2x+1 D.y=x﹣1参考答案:A【考点】BK:线性回归方程.【分析】根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.【解答】解:∵=×(1+2+3+4)=2.5,=×(2+3+4+5)=3.5,∴这组数据的样本中心点是(2.5,3.5)把样本中心点代入四个选项中,只有y=x+1成立,故选A.4.点在圆上移动时,它与定点连线的中点的轨迹方程是(

)A.

B.C.

D.参考答案:C5.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()A.种 B.种C.8种 D.2种参考答案:A【考点】排列、组合的实际应用.【分析】根据题意,用捆绑法分析:将4个空车位看成一个整体,并将这个整体与8辆不同的车全排列,由排列数公式计算可得答案.【解答】解:根据题意,要求有4个空车位连在一起,则将4个空车位看成一个整体,将这个整体与8辆不同的车全排列,有A99种不同的排法,即有A99种不同的停车方法;故选:A.6.已知函数在上是单调增函数,则实数a的最大值是(

)A.0

B.1

C.2

D.3参考答案:D7.由直线,,与曲线所围成的封闭图形的面积为().A. B.1 C. D.参考答案:A,选.8.如果方程表示双曲线,则实数的取值范围是(

)A.

B.

C.

D.参考答案:C9.下面四个命题:①是两个相等的实数,则是纯虚数;②任何两个复数不能比较大小;③若,,且,则;④两个共轭虚数的差为纯虚数.其中正确的有(

)A.1个

B.2个

C.3个

D.4个参考答案:A略10.如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④ B.①③④ C.①②④ D.①②③参考答案:C【考点】直线与平面平行的性质;平面与平面垂直的性质.【分析】点M不在这两异面直线中的任何一条上,所以,过M点有且只有一条直线与直线AB、B1C1都相交,①正确.②过M点有且只有一条直线与直线AB、B1C1都垂直,正确.过M点有无数个平面与直线AB、B1C1都相交,③不正确.④过M点有且只有一个平面与直线AB、B1C1都平行,正确.【解答】解:直线AB与B1C1是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:取C1C的中点N,则MN∥AB,且MN=AB,设BN与B1C1交于H,则点A、B、M、N、H共面,直线HM必与AB直线相交于某点O.所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1,故②正确.过M点有无数个平面与直线AB、B1C1都相交,故③不正确.过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选

C.【点评】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想.二、填空题:本大题共7小题,每小题4分,共28分11.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是.参考答案:【考点】由三视图求面积、体积.【分析】由三视图知该四棱锥是如图所示的四棱锥S﹣ABCD,其中ABCD是边长为2的正方体,面SAD⊥面ABCD,SA=SD,AD中点为E,SE=4,由此求出外接球的半径,利用球体的表面积公式计算即可.【解答】解:由三视图知该四棱锥是如图所示的四棱锥S﹣ABCD,其中ABCD是边长为2的正方体,面SAD⊥面ABCD,SA=SD,AD中点为E,SE=4,其BC中点G,连结EG、SG,BD∩AC=H,设该四棱锥的外接球球心为O,作OF⊥SE于F,则OH⊥平面ABCD,OF=EH=1,CH=,设OH=x,则SF=4﹣x,∵OS=OC=R,∴OS2=OC2,即(4﹣x)2+1=x2+2,解得x=,∴该四棱锥的外接球半径R==,∴该四棱锥的外接球的表面积S=4πR2=4π×=.故答案为:.12.过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A,B两点,若以AB为直径的圆与直线x=﹣1相切,则抛物线的方程为.参考答案:y2=4x【考点】抛物线的简单性质.【分析】判断以AB为直径的圆与抛物线的准线相切,由已知得准线方程为x=﹣2,即可求抛物线的标准方程.【解答】解:取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,在直角梯形APQB中,|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|,故圆心M到准线的距离等于半径,∴以AB为直径的圆与抛物线的准线相切由已知得准线方程为x=﹣1,∴=1,∴p=2,故所求的抛物线方程为y2=4x.故答案为:y2=4x.13.(不等式选讲)若关于的不等式的解集为,则实数的取值范围为_________.参考答案:略14.已知曲线的参数方程是(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是_______________.参考答案:略15.已知直线在两坐标轴上的截距相等.则实数的值为________.参考答案:2或0;

16.在△的边上有个点,边上有个点,加上点共个点,以这个点为顶点的三角形有

个.参考答案:

解析:17.设随机变量服从正态分布,若,则c的值是______.参考答案:1【分析】由题得,解不等式得解.【详解】因为,所以,所以c=1.故答案为:1【点睛】本题主要考查正态分布的图像和性质,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)求二面角C1﹣AD﹣C的余弦值.参考答案:考点: 用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法.专题: 综合题.分析: (1)连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是直三棱柱,得四边形ACC1A1为矩形,由此利用三角形中位线能够证明A1B∥平面ADC1.(2)由ABC﹣A1B1C1是直三棱柱,且∠ABC=90°,知BA,BC,BB1两两垂直.由此能求出二面角C1﹣AD﹣C的余弦值.解答: (1)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点,又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,因为OD?平面ADC1,A1B?平面ADC1,所以A1B∥平面ADC1.…(6分)(2)解:由ABC﹣A1B1C1是直三棱柱,且∠ABC=90°,故BA,BC,BB1两两垂直.以BA为x轴,以BC为y轴,以BB1为z轴,建立空间直角坐标系,∵AB=BC=2AA1,∠ABC=90°,D是BC的中点,∴可设AA1=1,AB=BC=2,BD=DC=1,∴A(2,0,0),D(0,1,0),C(0,2,0),C1(0,2,1),∴=(﹣2,2,1),,设平面ADC1的法向量为,则,,∴,∴=(1,2,﹣2),∵平面ADC的法向量,所以二面角C1﹣AD﹣C的余弦值为|cos<>|=||=.点评: 本题考查直线与平面平行的证明,考查二面角的求法.解题时要认真审题,注意合理地化空间问题为平面问题,注意向量法的合理运用.19.(本小题满分12分)已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?参考答案:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:,故于是A到BC的直线距离是Acsin45°==,大于38海里,无触礁危险。20.在△ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC边的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程;参考答案:(1)设C(x0,y0),则AC中点M,BC中点N,….3分∵M在y轴上,∴=0,x0=-5。……..4分∵N在x轴上,∴=0,y0=-3。.即C(-5,-3)。………….6分(2)∵M,N(1,0),∴直线MN的方程为=1,即5x-2y-5=0………4分.21.(本小题满分12分)已知函数,当时,有极大值;(1)求的值;(2)求函数的极小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论