版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪教版六年级第二学期数学期末考前辅导第五章有理数1、用正数和负数表示具有相反意义的量。具有相反意义的量重在“动作意义相反”,和量的大小没有关系,故不一定为相反数。常以填空第一题、选择概念判断题(和相反数结合考察)出现。如:练1下列叙述正确的是()(书P7练习第4题)(A)正数和负数互为相反数(B)表示相反意义的量的两个数互为相反数(C)任何有理数都有相反数(D)一个数的相反数是负数2、求一个数的相反数。审清题意,是求相反数还是绝对值?填空题中前三题,如:练2的相反数是________3、求一个数的绝对值。绝对值的几何意义是:数在数轴上所对应的点与原点的距离。考察时以几何意义为主。如:练在数轴上,到原点的距离等于个单位长度的点所表示的有理数是_______练在数轴上,到所对应的点的距离等于3个单位长度的点所表示的有理数是___4、有理数的加法:先定符号,再将绝对值相加(同号)或相减(异号)。有理数的减法:减去一个数,等于加上这个数的相反数,转化为加法。练4计算:________________5、有理数的乘法:先定符号,同号为正异号为负,再将绝对值相乘。有理数的除法:除以一个不为零的数,等于乘以这个数的倒数。倒数:两数互为倒数两数之积为1(的含义为前后可以互推,下同)类比相反数:两数互为相反数两数之和为0练5计算:________________6、有理数的乘方:正数的任何次幂均为正数,负数的偶数次幂为正数,奇数次幂为负数。常在计算题中以混合运算的形式考察,注意小括号的位置。如:练计算:________________________________练化简,结果用幂的形式表示:_________7、有理数的混合运算,注意运算顺序,注意结果化简,一般计算题第一题出现。如:练7计算:8、科学计数法:将一个数表示成的形式(,为正整数)。一般考察时会结合考察单位换算,以及万、亿的转换,在填空题中出现,如:练“神舟八号”共飞行1100万千米,数字1100万用科学记数法表示为_________练“嫦娥二号”飞抵离地球7000000千米的深空,用科学记数法表示为_______米第六章一次方程(组)与不等式(组)1、项、常数项、系数、次数的定义。项一定是带着前面的正负符号的,后面解方程解不等式移项的时候最容易出错。常数项的系数为本身,次数为0。次数指该项中所有字母的指数和。如:练1的系数是_______,次数是________。2、看未知数的数值是不是某个方程的解,只需分别代入左右两边,相等即为方程的解。通常会结合参数、一次方程进行考察,如:练2若是方程的解,则关于的方程的解为_________3、根据等式的两个性质解一元一次方程。特别注意几个地方:去分母时加括号,两边同乘时常数项勿漏乘,去括号时系数和符号的处理,移项时项的符号要改变。如:练下列方程的变形化简,不正确的是()(可多选)(A)由,得(B)由,得(C)由,得(D)由,得(E)由,得练解方程:4、用一元一次方程解应用题的几种题型:(1)比,连比类:条件中出现“…之比为”的语句,假设时设为,再构造方程求先求出,再回代求解。(2)存/贷款利息类:存款时储户通常要交利息的20%(具体看题目条件)作为利息税,贷款没有利息税。注意审题,是利息还是本利和。(3)进价售价盈亏类:一般涉及3个价格,原价,标价,实际售价。可借助列关系式辅助分析,设元时应设原价。盈利率和亏损率和标价无关。(4)宿舍分配类:抓住两个不变量,宿舍间数不变,学生人数不变。两种设元法。(5)跑道相遇类:审题,是环形跑道还是直线跑道?直线跑道是否能往返跑?是同向出发还是反向出发?是否同时出发?借助于简图,抓住相遇时刻的等量关系。(6)其他,顺流逆流问题、制作镜片镜架配套问题,等等。如:(只需设元、列方程)练某班男女生之比为,后来走了12名女生,男女生之比的比值恰为2,求原来的男生女生各有多少人?练某人将2万元存了三年定期,到期后扣除20%的利息税,共取出21440元,求这三年的年利率。练某商品零售价定为1100元,后打八折出售,仍获利10%,求进价。练给学生分配宿舍,若每间住4人,最后多余一间宿舍;若每间住3人,又缺2间。求学生共有多少人?(要求用两种方法设元列方程)练甲乙两人在400米长的环形跑道上散步,同时同地出发,甲的速度6米/秒,乙的速度4米/秒。若同向走,几秒后相遇?若反向走,几秒后相距10米?(注意多解)练船只从甲地驶往乙地比从乙地驶往甲地少小时,已知船只在静水中的速度为20km/h,水流速度为3km/h,求甲乙两地距离。练某厂有工人56名,每个工人每天能加工镜片90片,或镜架100副。如何分配可以使得每天生产的镜架和镜片配套?5、不等式的三个性质,通常在选择题中考察,如:练若,下列不等式一定成立的是()(可多选)(A)(B)(C)(D)(E)(F)练若,则是否一定成立?6、解一次不等式,注意点同一次方程,特别注意的是只有两边同乘除负数时,才要改变不等号方向。考察时会结合数轴,注意端点的实心/空心。如:练解不等式,并将解集在数轴上表示出来:练关于的不等式的解集在数轴上的表示如图所示,则的值为________7、解一元一次不等式组为必考知识点,步骤:由①得……,由②得……,数轴表示……,下结论。注意审题,是否要求特殊解?哪种特殊解?整数解?正整数解?负整数解?非负整数解?自然数解?注意端点能否取到?结论格式:原不等式组的解集为……,其中整数解(或其他)为……。如:练解不等式组:,并写出该不等式组的非负整数解。练若不等式组的解集是,则的取值范围是____________练若不等式组无解,则的取值范围是____________8、对二元一次方程变形,用表示,形式为…,类似于将看作参数。求二元一次方程的特殊解,一定是均满足,可先变形,再取值,也可直接“试”根。给定一组的值,构造二元一次方程,注意简洁明了,千万别整些奇奇怪怪的数字,还要注意审题,是构造方程?还是方程组?如:练将方程变形,用含的代数式表示,则_______练二元一次方程的负整数解为___________练请写出一个以为解的二元一次方程________________9、解二元一次方程组,消元转化为一元方程是关键。若有未知数的系数为,代入消元很方便;若有相同未知数的系数相等或成相反数,加减消元最方便。当然,审题时要注意观察,所给方程是否可先化简?如:练如果二元一次方程的解中,的值互为相反数,则______练解方程组:10、解三元一次方程组,先判断先消哪个元最方便,思路一定要保持清晰。如:练10解方程组:11、用一次方程组解应用题:一般要求几个量就设几个元,具体看情况而定。若出现“至少”、“最多”,则为一次不等式问题,必须构造不等式求解。如:练甲、乙两汽车制造厂原计划每月生产汽车460辆,本月甲完成了计划数的110%,乙完成了计划数的115%,两厂本月实际共生产519辆。问两厂本月实际各生产多少辆?练电信局现有600部电话已申请电话待装,此外每天另有新申请电话待装,且每天的申请量相同。若安排3个装机小组,60天恰好完工;若安排5个装机小组,20天恰好完工。求每天申请装机电话几部?每个装机小组每天安装几部电话?(书P80)练某旅游商点欲购进A、B两种纪念品,已知380元可以购买7件A,8件B;或10件A,6件B。(1)求A、B两种纪念品的进货单价;(2)若每销售1件A种纪念品获利5元,1件B种纪念品获利7元,该商店准备用不超过900元购进A、B两种共40件,且全部售出后总获利不低于216元。问如何进货使总获利最大?最大多少?第七章线段与角的画法1、两点之间的距离:联结两点的线段的长度。(常考)两点之间,线段最短。(未特殊说明,均指直线段)点与直线/线段的位置关系,会在图中正确延长/反向延长线段。如:练1下列叙述,正确的是()(可多选)(A)联结两点的线段叫做两点之间的距离(B)在线段AB的反向延长线上取点C:(C)若线段ABCD,则将点A和点C重合,线段AB与线段CD叠合后,点B一定在线段CD的延长线上(D)角平分线是一条射线(E)西南方向用方位角可以描述成西偏南45度方向(F)如果两个角度数之和为180度,则这两个角互为邻补角2、线段的中点问题是必考点。通常在填空题中出现,可在图中从小线段开始标长度,一步步推导,如:练2如图,,是的中点,,,则___3、表示角时,若一个顶点(如)出发只有唯一的一个角,才可以用表示。方位角:只能是南偏东/西、北偏东/西,正南方向、东南方向(南偏东)。小结论:若A在B的北偏东方向,则B在A的南偏西方向。(角度不变,方位相反)。如:练3已知射线在南偏东方向上,以下正确反映了射线的方位角的是()4、会用尺规作相等的角、用三角板作特殊的角(如),审题时看清是在内部还是外部作角。必考点:会用尺规二等分角(即角平分线)。常结合角的和差以及余角补角考察,如:练4已知(1)在内部做出它的补角;(2)尺规作出的平分线(保留作图痕迹);(3)在图中找出所有与互余的角______________5、两角互余:角度之和。两角互补:角度之和。注意:计算角的进度为60!小结论:锐角的补角比它的余角大。一个角与它的余角相等,这个角为;一个叫与他的补角相等,这个角为。性质:同角的余角/补角相等。(等量减等量,差相等)考察时常以图形出现。如:练的余角的补角为_________练将顺时针旋转一定角度(),得到,且在同一直线上,相互垂直,则旋转了____°6、钟面上的角度问题:一类是计算某个时间点分针和时针所成角度(静态);一类是计算两个时间点之间分针和时针各转的角度(动态)。学会自己画钟面,并记住几个结论:钟面上一大格为(),一小格为();分针一分钟转(,也就是一小格的角度),时针一分钟转(),如:练6小明从镜子里看到钟面显示在4:40的位置,请问实际时间是_______,此时分针和时针所成的角度为_________;从这个时间到7:45,的过程中,时针转了_______°,分针转了______°.第八章长方体的再认识1、长方体中的三元素:12条棱,6个面,8个顶点。一个顶点出发的三种棱分别为长、宽、高,考察时经常会以此涉及棱长总和的计算、表面积及体积的计算。如:练一个长方体中,从同一个顶点出发的三条棱长之比为,且所有棱长总和为,则这个长方体的表面积为__________,体积为_________练将棱长分别为的长方体切割成棱长为的小正方体,表面积增加了________2、补画长方体直观图,若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钻石画教案完整版本
- 《公务员法》知识考试题库150题(含答案)
- 2025年江苏信息职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年新疆体育职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 幼儿园主题秋游活动策划方案五篇
- 公司居间服务合同模板
- 互联网软件开发及维护合同
- 陶瓷销售合同范本
- 电脑独家代理销售合同
- 贷款第三方担保合同
- 《中国心力衰竭诊断和治疗指南(2024)》解读完整版
- 《档案管理课件》课件
- 2025年中考物理终极押题猜想(新疆卷)(全解全析)
- 胫骨骨折的护理查房
- 抽水蓄能电站项目建设管理方案
- 电动工具培训课件
- 《智能网联汽车智能传感器测试与装调》电子教案
- GB/T 32399-2024信息技术云计算参考架构
- 2025年湖南省长沙市中考数学模拟试卷(附答案解析)
- 五级人工智能训练师(初级)职业技能等级认定考试题库(含答案)
- 企业职务犯罪法制讲座课件
评论
0/150
提交评论