![求数列通项公式pptdoc资料_第1页](http://file4.renrendoc.com/view/951492cdf5e0d626a6454a22ba710ded/951492cdf5e0d626a6454a22ba710ded1.gif)
![求数列通项公式pptdoc资料_第2页](http://file4.renrendoc.com/view/951492cdf5e0d626a6454a22ba710ded/951492cdf5e0d626a6454a22ba710ded2.gif)
![求数列通项公式pptdoc资料_第3页](http://file4.renrendoc.com/view/951492cdf5e0d626a6454a22ba710ded/951492cdf5e0d626a6454a22ba710ded3.gif)
![求数列通项公式pptdoc资料_第4页](http://file4.renrendoc.com/view/951492cdf5e0d626a6454a22ba710ded/951492cdf5e0d626a6454a22ba710ded4.gif)
![求数列通项公式pptdoc资料_第5页](http://file4.renrendoc.com/view/951492cdf5e0d626a6454a22ba710ded/951492cdf5e0d626a6454a22ba710ded5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求数列通项公式ppt例1、写出下面数列的一个通项公式,使它的前几项分别是下列各数。已知数列的前几项,通常先将各项分解成几部分(如符号、分子、分母、底数、指数等),然后观察各部分与项数的关系,写出通项。一、观察法1、写出下列数列的一个通项公式:(1)
9,99,999,9999,……解:an=10n-1(2)1,11,111,1111,……分析:注意观察各项与它的序号的关系有10-1,102-1,103-1,104-1解:an=(10n-1)这是特殊到一般的思想,也是数学上重要的思想方法,但欠严谨!分析:注意与熟悉数列9,99,999,9999,···联系练习:注意:(1)这种做法适用于所有数列;(2)用这种方法求通项需检验a1是否满足an.二、公式法(利用an与Sn的关系或利用等差、等比数列的通项公式)练习:1.{an}的前项和Sn=2n2-1,求通项an二、公式法(利用an与Sn的关系或利用等差、等比数列的通项公式)an=S1
(n=1)Sn-Sn-1(n≥2)解:当n≥2时,an=Sn-Sn-1=(2n2-1)-[2(n-1)2-1]=4n-2不要遗漏n=1的情形哦!当n=1时,a1=1不满足上式因此an=1
(n=1)4n
-2(n≥2,)3.已知{an}中,a1+2a2+3a3+•••+nan=3n+1,求通项an解:∵a1+2a2+3a3+···+nan=3n+1(n≥1)注意n的范围∴a1+2a2+3a3+···+(n-1)an-1=3n(n≥2)
nan=3n+1-3n=2·3n2·3nn∴an=而n=1时,a1=9(n≥2)两式相减得:∴an=9(n=1)2·3nn(n≥2,)例3.已知{an}中,an+1=an+n(n∈N*),a1=1,求通项an解:由an+1=an+n(n∈N*)得a2-a1=1a3-a2=2a4-a3=3•••an-an-1=n-1an=(an-an-1)+(an-1-an-2)+•••+(a2-a1)+
a1
=(n-1)+(n
-2)+•••+2+1+1三、累加法(递推公式形如an+1=an+f(n)型的数列)n个等式相加得a1=1an+1-
an=n(n∈N*)(1)注意讨论首项;(2)适用于an+1=an+f(n)型递推公式求法:累加法练习:四、累乘法
(形如an+1=f(n)•an型)例4.已知{an}是首项为1的正项数列,且(n+1)an+12+an+1an-nan2=0,求{an}的通项公式解:∵(n+1)an+12+an+1an-nan2=0∴(an+1+an)[(n+1)an+1-
nan]=0∵an+1+an>0∴(n≥1)∴an=...
注意:累乘法与累加法有些相似,但它是n个等式相乘所得∴(n+1)an+1=
nan练习1:类型四、累乘法形如的递推式四、累乘法适用于an+1=anf(n)型的递推公式
练习2五、迭代法例5.已知{an}中,an=3n-1+an-1,(n≥2),a1=1,求通项an.解:∵an=3n-1+an-1(n≥2)∴an=3n-1+an-1=3n-1+3n-2+an-2
=3n-1+3n-2+3n-3+an-3=3n-1+3n-2+3n-3+···+3+
a1=3n-1+3n-2+3n-3+···+3+1=3n
-12
特点逐项代换(递推公式形如an+1=an+f(n)型的数列)六待定系数法(构造法)例6:解:由题意可知:an+1+1=2(an+1)所以数列{an+1}是以a1+1=2为首项,2为公比的等比数列.所以an+1=2n,即an=2n-1反思:待定系数法如何确定x?待定系数法:令an+1+x=p(an+x)即an+1=pan+px-x根据已知x=所以数列{}是等比数列.类型七、相除法形如的递推式例8:【变式迁移】已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).(1)求证数列为等差数列;(2)求数列{an}的通项公式.
解:(1)方法1:(构造法)因为a1=5且an=2an-1+2n-1,所以当n≥2时,an-1=2(an-1-1)+2n,所以
,所以
,所以是以为首项,以1为公差的等差数列.方法2:(代入法)因为a1=5,n≥2时,所以,所以是以为首项,以1为公差的等差数列.(2)由(1)知,所以an=(n+1)2n+1.
练习.
已知数列{an}中a1=2,an+1=4an+
求数列{an}的通项公式。反思例9:八取倒法形如的递推式练习形如的递推式例10:八取倒法求数列的通项公式类型方法1、已知前几项观察法2、已知前n项和Sn前n项和法3、形如的递推式累加法4、形如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铁岭货运上岗证考试题
- 2025年唐山c1货运上岗证模拟考试
- 2024-2025年高中政治课时作业10新时代的劳动者含解析新人教版必修1
- 2024-2025学年高中生物课时分层作业12基因指导蛋白质的合成含解析新人教版必修2
- 2024-2025版高中生物2.1.1-2孟德尔遗传试验的科学方法分离规律试验练习含解析中图版必修2
- 2024-2025学年高中化学课时提升作业十五盐类的水解含解析新人教版选修4
- 2024-2025学年八年级物理全册4.1光的反射练习含解析新版沪科版
- 2024-2025学年高中语文7李将军列传学案含解析苏教版选修史记蚜
- 2024-2025学年高中生物第2章细胞的化学组成第2节组成细胞的无机物练习含解析北师大版必修1
- 我想你的检讨书
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- (正式版)SHT 3551-2024 石油化工仪表工程施工及验收规范
- 水利生产安全事故典型案例分析
- 医院输血管理委员会工作总结
- 海淀高科技高成长20强暨明日之星年度报告
- 不停电作业标准流程及表格
- (建筑电气工程)电气系统调试方案
- 2022年煤矿事故应急救援演练方案
- 常见病照护课件(完整版)
- 新人教版八年级下册初中物理全册课前预习单
- 第三章-隋唐佛教宗派的兴盛与思想发展课件
评论
0/150
提交评论