![高中数学函数的概念_第1页](http://file4.renrendoc.com/view/2632ffa32c3dd9ce73caf27eb6d7abe4/2632ffa32c3dd9ce73caf27eb6d7abe41.gif)
![高中数学函数的概念_第2页](http://file4.renrendoc.com/view/2632ffa32c3dd9ce73caf27eb6d7abe4/2632ffa32c3dd9ce73caf27eb6d7abe42.gif)
![高中数学函数的概念_第3页](http://file4.renrendoc.com/view/2632ffa32c3dd9ce73caf27eb6d7abe4/2632ffa32c3dd9ce73caf27eb6d7abe43.gif)
![高中数学函数的概念_第4页](http://file4.renrendoc.com/view/2632ffa32c3dd9ce73caf27eb6d7abe4/2632ffa32c3dd9ce73caf27eb6d7abe44.gif)
![高中数学函数的概念_第5页](http://file4.renrendoc.com/view/2632ffa32c3dd9ce73caf27eb6d7abe4/2632ffa32c3dd9ce73caf27eb6d7abe45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于高中数学函数的概念第一页,共二十三页,2022年,8月28日教学目标
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.教学重点:函数的概念,函数定义域的求法.教学难点:函数概念的理解.第二页,共二十三页,2022年,8月28日函数的概念:在某变化过程中,有两个变量x、y,如果给定一个x,相应地确定唯一的一个y值。那么就称y是x的函数,其中x是自变量,y是因变量。从上面概念知道:可以用函数描述变量x,y之间的依赖关系。下面我们将进一步的学习函数及其构成要素。首先请看这几例子:第三页,共二十三页,2022年,8月28日
引例一一枚炮弹发射后,经过60s落到地面击中目标。炮弹的射高为4410m,且炮弹距地面的高度h(单位:m)随时间(单位:s)变化的规律是
h=294t-4.9t2思考以下问题:(1)炮弹飞行1秒、8秒、15秒、25秒时距地面多高?(2)炮弹何时距离地面最高?(3)你能指出变量t和h的取值范围吗?分别用集合A和集合B表示出来。(4)对于集合A中的任意一个时间t,按照对应关系,在B中是否都有唯一确定的高度h和它对应?第四页,共二十三页,2022年,8月28日引例二近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况思考:(1)能从图中看出哪一年臭氧层空洞的面积最大?(2)哪些年的臭氧层空洞的面积大约为1500万平方千米?(3)变量t的取值范围是多少?第五页,共二十三页,2022年,8月28日引例三请问:(1)恩格尔系数与年份之间的关系是否和前两个事例中的两个变量之间的关系相似?(2)如何用集合与对应的语言来描述这个关系?“八五”计划以来我国城镇居民恩格尔系数变化情况如下表:年份19911992199319941995199619971998199920002001家庭恩格尔系数%53.852.950.149.949.948.646.444.541.939.237.9第六页,共二十三页,2022年,8月28日以上三个实例有那些公共的特点?思考它们的关系可以描述为:对于数集A中的每一个t,按照某种对应关系f,在数集B中都有唯一确定的h和它对应,记作:f:AB第七页,共二十三页,2022年,8月28日所以得到函数的概念:设A和B是两个非空集合,如果按照某种对应关系f,使A的任何一个x,在B中都有唯一确定的f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。记作:x叫做自变量,x的取值范围A叫做函数的定义域,与x的值对应的y值叫做函数值。函数值的集合{}叫做函数的值域。第八页,共二十三页,2022年,8月28日例如:(1)一次函数y=ax+b(a≠0)定义域为R值域为Ry=ax+b(a≠0)x(2)二次函数定义域为R值域为B
x第九页,共二十三页,2022年,8月28日例题分析例1已知函数(1)求函数的定义域(2)求的值(3)当a>0时,求的值解(1)有意义的实数x的集合是{x|x≥-3}
有意义的实数x的集合是{x|x≠2}所以这个函数的定义域就是
第十页,共二十三页,2022年,8月28日(2)(3)因为a>0,所以f(a),f(a-1)有意义课堂练习:P21练习1/2第十一页,共二十三页,2022年,8月28日问题思考设A={1,2,3},B={1,4,8,9},对应关系是f:平方。问对应f:AB是否为从A到B的一个函数?这个函数的定义域是什么?值域C又是什么?一般情况下,C与B之间有关什么关系?两个函数相等的条件是什么?第十二页,共二十三页,2022年,8月28日函数定义域值域对应关系*值域是由定义域和对应关系决定的。*如果两个函数的定义域和对应关系完全一致,就知这两个函数相等。今后如无特别声明,已知函数即指B为函数值域。于是函数有三要素,即:*通常用表示函数已有所反映。第十三页,共二十三页,2022年,8月28日例2下列函数哪个与函数y=x相等解(1),这个函数与y=x(x∈R)对应一样,定义域不不同,所以和y=x(x∈R)不相等
(2)这个函数和y=x(x∈R)对应关系一样,定义域相同x∈R,所以和y=x(x∈R)相等x,x≥0-x,x<0(3)这个函数和y=x(x∈R)定义域相同x∈R,但是当x<0时,它的对应关系为y=-x所以和y=x(x∈R)不相等第十四页,共二十三页,2022年,8月28日(4)的定义域是{x|x≠0},与函数y=x(x∈R)的对应关系一样,但是定义域不同,所以和y=x(x∈R)不相等课堂练习:P21练习3第十五页,共二十三页,2022年,8月28日区间的概念⒈满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b]设a,b是两个实数,而且a<b,我们规定:⒉满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b)⒊满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示为[a,b)或(a,b]这里的实数a,b叫做相应区间的端点第十六页,共二十三页,2022年,8月28日定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]ab{x|a<x<b}开区间(a,b)ab{x|a≤x<b}半开半闭区间[a,b)ab{x|a<x≤b}半开半闭区间(a,b]ab第十七页,共二十三页,2022年,8月28日实数集R可以表示为(-∞,+∞)x≥ax>ax≤bx<b(-∞,b](-∞,b)(a,+∞)[a,+∞)第十八页,共二十三页,2022年,8月28日例3设f(x)的定义域是[-1,3],值域为[0,1],试求函数f(2x+1)的定义域及值域。分析:函数f(2x+1)的自变是仍是x,不是2x+1,故应由2x+1满足的条件中求出x的取值范围,进而得所求定义域;而2x+1已取遍定义域内的每一个实数,所以值域没有改变。解:由已知-1≤2x+1≤3,得-1≤x≤1。得函数f(2x+1)的定义域是[-1,1],值域仍为[0,1]。辩:将值域写成y∈[0,1]行吗?0≤y≤1呢?第十九页,共二十三页,2022年,8月28日例4(1)(孪生问题1)已知f(x)=x2-x+1,求f(2x+1)。
(2)(孪生问题2)已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域。解(1):f(2x+1)=(2x+1)2-(2x+1)+1=4x2+2x+1。解(2):由已知-1≤x≤3,得2x+1∈[-1,7],又f(x)的定义域由f(2x+1)确定,故f(x)的定义域为[-1,7]。注:(1)f(x)意含对x的一种运算法则;
(2)解题时经常将一个变量作为整体看;
(3)2x+1∈[-1,7]与-1≤2x+1≤7是同义句。第二十页,共二十三页,2022年,8月28日课堂小结一个概念,二种语言,三个要素。四项注意:1、已知函数均指由定义域到值域的函数;2、函数问题首先看定义域;3、f(x)含对x的一种操作规定;4、根据需要,常常要用整体看问题。第二十一页,共二十三页,2022年,8月28日数学天才——莱布尼兹
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中政治 第3单元 第6课 第1框 源远流长的中华文化说课稿 新人教版必修3001
- Unit 1 Wish you were here Reading (2) 说课稿-2024-2025学年高中英语译林版(2020)选择性必修第三册001
- 产品配方技术转让合同范例
- 广西小型温室工程施工方案
- 泡沫混凝土路基施工方案
- 七人合同范例
- 代销垫资合同范本
- 加工承揽制作合同范例
- 2024年01月浙江2024宁波通商银行社会招考(零售专场)笔试历年参考题库附带答案详解
- 线路架设施工方案
- 【高中物理竞赛大全】 竞赛3 电磁学 50题竞赛真题强化训练解析版-高考物理备考复习重点资料归纳
- 再见2024你好2025展望未来
- GB/T 17395-2024钢管尺寸、外形、重量及允许偏差
- 2025届山东省济南市历城二中高二上数学期末学业质量监测试题含解析
- 2024年全国各地中考试题分类汇编:文学常识
- 七年级信息技术上册 第13课时 文件管理教案 科教版
- 2022年版义务教育语文课程标准题库(教师教资培训考试专用十三套)
- 英语新课标(英文版)-20220602111643
- 高考模拟作文“文化自信:春节走向世界”导写+范文3篇
- 药品管理法律制度的创新与探索
- 苏教版三年级下册数学计算能手1000题带答案
评论
0/150
提交评论