广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析_第1页
广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析_第2页
广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析_第3页
广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析_第4页
广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市盘龙中学2022-2023学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.语句甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0,且a为常数);语句乙:P点的轨迹是椭圆,则语句甲是语句乙的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【解答】解:若P点的轨迹是椭圆,则根据椭圆的定义可知动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0,且a为常数)成立.若动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0,且a为常数),当2a≤|AB|,此时的轨迹不是椭圆.∴语句甲是语句乙的必要不充分条件.故选:B.2.已知直线l过点(1,0),且倾斜角为直线l0:x﹣2y﹣2=0的倾斜角的2倍,则直线l的方程为()A.4x﹣3y﹣3=0 B.3x﹣4y﹣3=0 C.3x﹣4y﹣4=0 D.4x﹣3y﹣4=0参考答案:D【考点】GU:二倍角的正切.【分析】先求直线x﹣2y﹣2=0的斜率,进而转化为倾斜角,用2倍角公式求过点(1,0)的斜率,再求解直线方程.【解答】解:由题意,直线x﹣2y﹣2=0的斜率为k=0.5,倾斜角为α,所以tanα=0.5,过点(1,0)的倾斜角为2α,其斜率为tan2α==,故所求直线方程为:y=(x﹣1),即4x﹣3y﹣4=0.故选:D.3.关于的不等式对恒成立,则实数的取值范围是A.(-∞,0)

B.(-∞,0)∪

C.(-∞,0]

D.(-∞,0]∪参考答案:C略4.设函数在定义域内可导,的图象如右图所示,则导函数的图象可能为

参考答案:D略5.(

)A.

B.

C.

D.参考答案:B6.设等比数列前项的积为,若是一个确定的常数,那么数列,,,中也是常数的项是A.

B.

C.

D.

参考答案:C7.函数y=的图象大致是()A. B. C. D.参考答案:D【考点】4N:对数函数的图象与性质.【分析】先由奇偶性来确定是A、B还是C、D选项中的一个,再通过对数函数,当x=1时,函数值为0,可进一步确定选项.【解答】解:∵f(﹣x)=﹣f(x)是奇函数,所以排除A,B当x=1时,f(x)=0排除C故选D8.已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(

)A. B.2 C. D.3参考答案:B【考点】点到直线的距离公式.【专题】计算题.【分析】设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.【解答】解:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=﹣1的距离d2=a2+1;P到直线l1:4x﹣3y+6=0的距离d1=则d1+d2=a2+1=当a=时,P到直线l1和直线l2的距离之和的最小值为2故选B【点评】此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题9.设满足约束条件,,,若目标函数的最大值为12则的最小值为(

)A.

B.

C.

D.参考答案:B10.已知等差数列的前项和为,若,则等于(

)A.36

B.54

C.72

D.18参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在如图所示的程序框图中输入3,结果会输出________.参考答案:812.有一球内接圆锥,底面圆周和顶点均在球面上,其底面积为4π,已知球的半径R=3,则此圆锥的体积为

.参考答案:或

【考点】球内接多面体.【分析】求出圆锥的高,即可求出圆锥的体积.【解答】解:由πr2=4π得圆锥底面半径为r=2,如图设OO1=x,则,圆锥的高或所以,圆锥的体积为或.故答案为或.【点评】本题考查圆锥的体积,考查学生的计算能力,正确求出圆锥的高是关键.13.展开式中常数项为()

A.70

B.56

C.24

D.16参考答案:A略14.函数的单调减区间为

。参考答案:15.=________.参考答案:16.如图,若正四棱柱的底面边长为2,高为4,则异面直线与AD所成角的余弦值为______________参考答案:略17.在△ABC中,BC=AB,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为.参考答案:考点:双曲线的标准方程;双曲线的简单性质.专题:计算题.分析:先求出边AC的长,在利用双曲线的定义,求出离心率.解答:解:由题意知,AB=2c,又△ABC中,BC=AB,∠ABC=120°,∴AC=2c,∵双曲线以A,B为焦点且过点C,由双曲线的定义知,AC﹣BC=2a,即:2c﹣2c=2a,∴=,即:双曲线的离心率为.故答案为.点评:本题考查双曲线的定义及性质.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.直线经过点,且与圆相交,截得弦长为,求的方程,参考答案:略19.已知函数f(x)=alnx+x2+1.(Ⅰ)当a=﹣时,求f(x)在区间[,e]上的最值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求导f(x)的定义域,求导函数,利用函数的最值在极值处与端点处取得,即可求得f(x)在区间[,e]上的最值;(Ⅱ)求导函数,分类讨论,利用导数的正负,可确定函数的单调性;(Ⅲ)由(Ⅱ)知,当﹣1<a<0时,f(x)min=f(),即原不等式等价于f()>1+ln(﹣a),由此可求a的取值范围.【解答】解:(Ⅰ)当a=﹣时,,∴.∵f(x)的定义域为(0,+∞),∴由f′(x)=0得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴f(x)在区间[,e]上的最值只可能在f(1),f(),f(e)取到,而f(1)=,f()=,f(e)=,∴f(x)max=f(e)=,f(x)min=f(1)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ),x∈(0,+∞).①当a+1≤0,即a≤﹣1时,f′(x)<0,∴f(x)在(0,+∞)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当a≥0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③当﹣1<a<0时,由f′(x)>0得,∴或(舍去)∴f(x)在(,+∞)单调递增,在(0,)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上,当a≥0时,f(x)在(0,+∞)上单调递增;当﹣1<a<0时,f(x)在(,+∞)单调递增,在(0,)上单调递减;当a≤﹣1时,f(x)在(0,+∞)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由(Ⅱ)知,当﹣1<a<0时,f(x)min=f()即原不等式等价于f()>1+ln(﹣a)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣即aln+﹣+1>1+ln(﹣a)整理得ln(a+1)>﹣1∴a>﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又∵﹣1<a<0,∴a的取值范围为(﹣1,0).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.某牛奶厂老板2009年初有资产500万元,稳定的富民政策激励他引进了先进的生产设备,资产年平均增长率可达到30%,从今年起,计划每年年底拿出相同数额的资金捐给某福利院,这家牛奶厂每年捐多少钱,仍可保证10年后资产(捐款后)翻两翻?(精确到0.1万元)(参考数据1.39=10.6,1.310=13.8)参考答案:解析:1年底捐献后资产

500×1.3-xw.w.w.k.s.5.u.c.o.m

2年底捐献后资产

(500×1.3-x)×1.3-x

=500×1.32-1.3x-x3年底捐献后资产

(500×1.32-1.3x-x)×1.3-x=500×1.33-1.32x-1.3x-x……………10年底捐献后资产

500×1.310-1.39x-1.38x-………-1.3x-x

(6分)依题意,

500×1.310-1.39x-1.38x-………-1.3x-x=2000

500×1.310-=2000

x=114.8(万元)答:略21.(本小题满分12分)已知等比数列中,分别是某等差数列的第5项、第3项、第2项,且公比(1)求数列的通项公式;(2)已知数列满足:的前n项和参考答案:略22.[选修4-4:坐标系与参数方程](12分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),M为C1上的动点,P点满足=2,点P的轨迹为曲线C2.(Ⅰ)求C2的普通方程;(Ⅱ)设点(x,y)在曲线C2上,求x+2y的取值范围.参考答案:【考点】参数方程化成普通方程;轨迹方程.【分析】(Ⅰ)设点的坐标为p(x,y),根据题意,用x、y表示出点M的坐标,然后根据M是C1上的动点,代入求出C2的参数方程即可;(Ⅱ)令x=3cosθ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论