下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市桥城中学2022-2023学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.现代社会对破译密码的难度要求越来越高。有一种密码把英文的明文(真实文)按字母分解,其中英文的的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数(见下表):abcdefghijklmnopqrstuvwxyz1234567891011121314151617181920212223242526
现给出一个变换公式:将明文转换成密文,
如,即变成;,即变成。按上述规定,若将明文译成的密文是shxc,那么原来的明文是
A.love
B.lhho
C.ohhl
D.eovl参考答案:A密文shxc中的s对应的数字为19,按照变换公式:,原文对应的数字是12,对应的字母是;密文shxc中的h对应的数字为8,按照变换公式:,原文对应的数字是15,对应的字母是;2.等差数列{}中,,则前n项和取最大值时,n为(
)A.6 B.7 C.6或7 D.以上都不对
参考答案:C略3.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项和为(
)
A.138
B.135
C.95
D.23参考答案:C略4.对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:①任意三次函数都关于点对称:②存在三次函数,若有实数解,则点为函数的对称中心;③存在三次函数有两个及两个以上的对称中心;④若函数,则:其中所有正确结论的序号是(
).A.①②④
B.①②③
C.①③④
D.②③④参考答案:A略5.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()
一年级二年级三年级女生373xy男生377370zA.24 B.18 C.16 D.12参考答案:C【分析】根据题意先计算二年级女生的人数,则可算出三年级的学生人数,根据抽取比例再计算在三年级抽取的学生人数.【解答】解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为3:3:2,故在分层抽样中应在三年级抽取的学生人数为.故选C.6.双曲线的渐近线方程是(
)A.
B.
C.
D.参考答案:A略7.已知某种产品的支出广告额x与利润额y(单位:万元)之间有如下对应数据:x34567y2030304060则回归直线方程必过()A.(5,36) B.(5,35) C.(5,30) D.(4,30)参考答案:A【考点】线性回归方程.【分析】求出样本中心坐标即可.【解答】解:由题意可知回归直线方程必过样本中心坐标(,),即(5,36).故选:A.8.在数列中,如果存在常数,使得对于任意正整数均成立,那么就称数列为周期数列,其中叫做数列的周期.已知数列满足,若,当数列的周期为时,则数列的前2010项的和为
(
)
A.669
B.670
C.1339
D.1340参考答案:D9.在正方体ABCD-A1B1C1D1中,异面直线BC1与B1D1所成角为(
).A.30° B.45° C.60° D.90°参考答案:C在正方体中,,连接,,则,∴为等边三角形,故,即与所成角为,即与所成角为.故选.10.在平面直角坐标系中,定义为点到点的一个点变换,已知P1(0,1),P2(x2,y2),…,(nN*)是经过点变换得到的一列点,设,数列的前n项和为,给出以下四个结论:①;②;③;④.则正确结论的序号是(
)A.①②④
B.①②③
C.②③④
D.①③④
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在如图所示的流程图中,若f(x)=2x,g(x)=x3,则h(2)的值为________.
参考答案:812.函数的定义域是 参考答案:13.下列推理是归纳推理的是
。(1).由三角形的性质推理出三棱锥的有关性质。(2).由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
(3).由圆x2+y2=r2的面积πr2,猜出椭圆x2/a2+y2/b2=1的面积S=πab
(4).A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆。参考答案:(2)14.若函数f(x)=|2x+a|在区间[3,+∞)上是增函数,则a的取值范围是.参考答案:[﹣6,+∞)【考点】3F:函数单调性的性质.【分析】写出f(x)分段函数形式的解析式,得出f(x)的单调增区间,从而得出a的范围.【解答】解:f(x)=,∴f(x)在(﹣∞,﹣)上单调递减,在[﹣,+∞)上单调递增,∵函数f(x)=|2x+a|在区间[3,+∞)上是增函数,∴﹣≤3,解得a≥﹣6.故答案为[﹣6,+∞).15.描述算法的方法通常有:(1)自然语言;(2)
;(3)伪代码.参考答案:流程图16.若双曲线的一条渐近线方程过,则此双曲线的离心率为__________.参考答案:.【分析】根据双曲线渐近线方程过点,将点代入渐近线方程即可求得,即可求得离心率。【详解】双曲线的渐近线方程为因为渐近线方程过点,即渐近线方程过代入可求得或(舍)则所以离心率【点睛】本题考查了双曲线的标准方程及其性质的应用,渐近线方程和离心率的简单求法,属于基础题。17.曲线在处的切线方程为
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(原创)(本小题满分13分)已知三次函数,为实常数。(1)若时,求函数的极大、极小值;(2)设函数,其中是的导函数,若的导函数为,,与轴有且仅有一个公共点,求的最小值。参考答案:(1)令,,极大值极小值,。(2),,,法一:令,令又则,当时,当时,。。法二:,“”,。19.(本小题满分12分)公安部发布酒后驾驶处罚的新规定(一次性扣罚12分)已于2011年4月1日起正式施行.酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表).血酒含量(0,20)[20,40)[40,60)[60,80)[80,100)[100,120]人数19412111依据上述材料回答下列问题:(1)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率;(2)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的人用大写字母如表示,醉酒驾车的人用小写字母如表示)参考答案:(Ⅰ)解:由表可知,酒后违法驾车的人数为6人,………1分则违法驾车发生的频率为:或;………3分酒后违法驾车中有2人是醉酒驾车,则酒后违法驾车中醉酒驾车的频率为.…5分20.(12分)二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
⑴求f(x)的解析式;⑵在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.参考答案:解:(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.
∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,所以,∴f(x)=x2-x+1.(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.设g(x)=x2-3x+1-m,其图象的对称轴为直线x=,所以g(x)在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.21.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:日期4月1日4月7日4月15日4月21日4月30日温差x/°C101113128发芽数y/颗2325302616(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:,)参考答案:【考点】BQ:回归分析的初步应用;CC:列举法计算基本事件数及事件发生的概率.【分析】(1)用数组(m,n)表示选出2天的发芽情况,用列举法可得m,n的所有取值情况,分析可得m,n均不小于25的情况数目,由古典概型公式,计算可得答案;(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)用数组(m,n)表示选出2天的发芽情况,m,n的所有取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(30,26),共有10个设“m,n均不小于25”为事件A,则包含的基本事件有(25,30),(25,26),(30,26)所以,故事件A的概率为(2)由数据得,,,,由公式,得,所以y关于x的线性回归方程为(3)当x=10时,,|22﹣23|<2,当x=8时,,|17﹣16|<2所以得到的线性回归方程是可靠的.22.(13分)已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+…+bn=bn+1﹣1(n∈N*)(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.参考答案:【考点】数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)直接由a1=2,an+1=2an,可得数列{an}为等比数列,由等比数列的通项公式求得数列{an}的通项公式;再由b1=1,b1+b2+b3+…+bn=bn+1﹣1,取n=1求得b2=2,当n≥2时,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 2982-2024工业车辆充气轮胎规格、尺寸、气压与负荷
- 2024年低田闲置转让合同范本
- 2024年代理要账居间协议合同范本
- 2024年冲桩机出售转让合同范本
- 小学毕业数学总复习专题九解决问题第21课时比和比例实际问题课件
- 专家幼小衔接培训
- 2024安全生产法律法规知识培训
- 2024至2030年中国锁花片数据监测研究报告
- 【数学】指数函数图象与性质测试卷-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 2024家庭装修施工合同新
- 兽医流行病学病因推断
- 历史幽愤的现代回响——《记念刘和珍君》课堂实录
- 英语单词分类大全-20170913
- 信息技术课课堂教学评价表
- 施工进度计划书
- 35KV集电线路铁塔组立专项方案
- 不锈钢管规格表大全以及理论重量表大全
- 公司保密制度-附保密分类表
- 滑雪场管理手册
- 人类养生长寿的新方法---“中枢平衡”健体强身模式
- 胸外科技术操作规范
评论
0/150
提交评论