【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册_第1页
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册_第2页
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册_第3页
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册_第4页
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:5.4.1正弦函数、余弦函数的图像(第一课时)一、教学内容:正弦函数、余弦函数的图像二、教学目标:(一)、了解正弦函数、余弦函数图象的来历,掌握“五点法”画出正弦函数、余弦函数的图象的方法.达成上述目标的标志是:学生能先根据正弦函数的定义绘制一个点,再绘制正弦函数在一个周期[0,2π]内的图象,最后通过平移得到正弦函数的图象;学生能用图象变换的方法,由正弦函数的图象绘制余弦函数的图象,并能就一个具体的点清晰地解释图象的变换方式及原因;能说出正弦函数、余弦函数图象的五个特殊点,并能用五点法绘制正弦函数的图象.(二)、正、余弦函数图象的区别与联系达成上述目标的标志是:先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到只要将函数y=sinx图象上的点向左平移π2个单位长度,即可得到函数(三)、正、余弦函数图象的简单应用.达成上述目标的标志是:会用“五点法”作出与正、余弦函数相关的函数简图.三、教学重点及难点(一)重点:正弦函数、余弦函数的图象.(二)难点:用单位圆中的正弦线作正弦函数的图象的方法;探究正、余弦函数图象间的联系.四、教学过程设计问题1:三角函数是我们学习的一类新的基本初等函数,按照函数研究的方法,学习了三角函数的定义之后,接下来应该研究什么问题?怎样研究?追问:(1)研究指数函数、对数函数图象与性质的思路是怎样的?(2) 绘制一个新函数图象的基本方法是什么?(3) 根据三角函数的定义,需要绘制正弦函数在整个定义域上的函数图象吗?选择哪一个区间即可?师生活动:教师提出问题,学生回忆函数研究的路线图,师生共同交流、规划,完善方案.预设的答案如下.研究的线路图:函数的定义——函数的图象——函数的性质.绘制一个新函数图象的基本方法是描点法.对于三角函数,单位圆上任意一点在圆周上旋转一周又回到原来的位置,这一特性已经用公式一表示,据此,可以简化对正弦函数、余弦函数图象与性质的研究过程,比如可以先画函数y=sinx,x

∈[0,2π]的图象,再画正弦函数y=sinx设计意图:规划研究方案,构建本单元的研究路径,以便从整体上掌握整个内容的学习进程,形成整体观念.问题2:在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sinx0并画出点T(x师生活动:方法1:一起作图探讨,如图5.4.1,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0=sinx0.由此,以x0为横坐标,y0追问:如何科学地将单位圆上每一点对应的图像画出?师生活动:若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,π6,π3,π2,…,2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x方法2:利用信息技术,可使x0在区间[0,2π]上取到足够多的值而画出足够多的点T(x0,sinx0),将这些点用光滑的曲线连接起来,可得到比较精确的函数y=sinx,设计意图:通过正弦函数的定义,得到点的坐标,通过分析点的坐标的几何意义,准确描点.进一步熟悉,描点连线成图,即点动成线的作图过程.问题3:根据函数y=sinx,x

∈[0,2π]的图象,你能想象函数y=sinx,师生活动:由诱导公式一可知,函数y=sinx,x

∈[2kπ,2(k+1)π],k∈Z且k≠0的图象与y=sinx,x

∈[0,2π]的图象形状完全一致.因此将函数y=sinx,x

∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数知识梳理:正弦函数的图象叫做正弦曲线(sinecueve),是一条“波浪起伏”的连续光滑曲线.追问:确定正弦函数的图象形状时,应抓住哪些关键点?师生活动:观察图5.4.3,在函数y=sinx,x

∈0,在确定图象形状时起关键作用.描出这五个点,函数数y=sinx,x

∈知识梳理:在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图方法近似地称为“五点(画图)法”,今后作简图是非常实用的.设计意图:观察函数图象,概括其特征,获得“五点法”画图的简便画法.问题4:由三角函数的定义可知,正弦函数、余弦函数是一对密切关联的函数.你能利用这种关系,借助正弦函数的图象画出余弦函数的图象吗?师生活动:学生先用排除法观察诱导公式,选择简洁的公式,作为正弦函数、余弦函数关系研究的依据.教师引导学生通过比较进行选择.从数的角度看,对于函数y=cosx,由诱导公式cosx=sin⁡(x追问1:你认为应该利用正弦函数和余弦函数的哪些关系,通过怎样的图形变换,才能将正弦函数的图象变换为余弦函数的图象?师生活动:函数y=sinx+π2,x

∈R的图象可以通过正弦函数y=sinx,知识梳理:余弦函数y=cosx,x

∈R的图象叫做余弦曲线(cosinecurve).它是与正弦曲线具有相同形状的“追问2:你能在两个函数图象上选择一对具体的点,解释这种平移变换吗?师生活动:这是教学的难点,教师要首先进行示范.教师可以先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到图象之后还可以再利用图象进行验证.设(x0,y0)是函数y=cosx图象上任意一点,则有令x0+π2=t0,则y0=sinxt比较两个点:(x0,y0)与(t0,y0).因为x0+π2=t0所以点(x0,y0)可以看做是点(t0,y0)向左平移π2个单位得到的,只要将函数y=sinx图象上的点向左平移π2知识梳理:余弦函数y=cosx,x

∈R的图象叫做余弦曲线(cosinecurve).它是与正弦曲线具有相同形状的“设计意图:利用诱导公式,通过图象变换,由正弦函数的图象获得余弦函数图象;增强对两个函数图象之间的联系性的认识.问题5:类似于用“五点法”画正弦函数的图象,你能找出余弦函数在区间[-π,π]上相应的五个关键点吗?可以画出y=cosx,x

∈[-π,π]的简图吗?师生活动:画余弦函数y=cosx,x∈[0,2π]的图象,五个关键点是(0,1),(eq\f(π,2),0),(π,-1),(eq\f(3π,2),0),(2π,1).用光滑曲线顺次连接这五个点,得到余弦曲线的简图.设计意图:观察余弦函数图象,掌握其特征,获得“五点法”.问题6:例题分析:如何用“五点法”作出下列函数的简图?(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].师生活动:老师点拨:在[0,2π]上找出五个关键点,用光滑的曲线连接即可.预设学生:在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到y=1+sinx,x∈[0,2π]的图象.追问:你能利用函数y=sinx,x∈[0,2π]的图象,通过图象变换得到y=1+sinx,x∈[0,2π]的图象吗?同样地,利用函数y=cosx,x∈[0,2π]图象,通过怎样的图象变换就能得到函数y=-cosx,x∈[0,2π]的图象?师生活动:学生先独立完成,然后就解题思路和结果进行展示交流,教师点评并给出规范的解答.设计意图:巩固学生对正弦函数、余弦函数图象特征的掌握,熟练“五点法"画图,掌握画图的基本技能.通过分析图象变换,深化对函数图象关系的理解,并为后续的学习作好铺垫.课堂小结正弦函数和余弦函数的图象.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.“五点法”是作三角函数图象的常用方法,“五点”即函数最高点、最低点与x轴的交点.3.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.六、目标检测设计(一)课前预习整理1、正弦曲线和余弦曲线1.可以利用单位圆中的______线作y=sinx,x∈[0,2π]的图象.2.y=sinx,x∈[0,2π]的图象向____、____平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.3.正弦函数y=sinx,x∈R的图象和余弦函数y=cosx,x∈R的图象分别叫做__________和__________.整理2、正弦曲线和余弦曲线“五点法”作图“五点法”作图的一般步骤是eq\x(______)⇒eq\x(______)⇒eq\x(______).设计意图:预习知识,引发思考.(二)课堂检测1.用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A.0,eq\f(π,2),π,eq\f(3π,2),2πB.0,eq\f(π,4),eq\f(π,2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论