版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.若正方体ABCD-A1B1C1D1中,已知P,Q分别是棱AA1,CC1的中点,则过点B,P,Q的截面是()A.邻边不等的平行四边形 B.菱形但不是正方形C.邻边不等的矩形 D.正方形解析:如图所示,过点B,P,Q的截面是菱形PBQD1.答案:B2.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有()A.0条 B.1条C.0或1条 D.无数条解析:过直线a与交点作平面β,设平面β与α交于直线b,则a∥b,若所给n条直线中有1条是与b重合的,则此直线与直线a平行;若没有重合的,则与直线a平行的直线有0条,故选C.答案:C3.已知平面α∥平面β,平面γ∩平面α=直线a,平面γ∩平面β=直线b,直线c⊂β,且c∥b,则下列说法不正确的是()A.c∥a B.a∥bC.b∥β D.c∥α解析:根据题意画出图形,如图所示,由图易知只有选项C不正确,因为b⊂β.答案:C4.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:①若α∥β,a⊂α,b⊂β,则a∥b;②若a∥b,a∥α,b∥β,则α∥β;③若α∥β,a⊂α,则a∥β;④若a∥α,a∥β,则α∥β.其中正确的个数为()A.1 B.2C.3 D.4解析:对于①,a∥b或a与b是异面直线,故①错;对于②,也可能是α与β相交,故②错;对于④,同样α与β也可能相交,故④错;只有③正确.答案:A二、填空题(每小题5分,共15分)5.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP=eq\f(1,3),过点P,E,F的平面与棱CD交于Q,则PQ=________.解析:∵EF∥平面ABCD,PQ=平面PEF∩平面ABCD,∴EF∥PQ,∴DP=DQ=eq\f(2,3),故PQ=eq\r(PD2+DQ2)=eq\r(2)DP=eq\f(2\r(2),3).答案:eq\f(2\r(2),3)6.如图所示,直线a∥平面α,点A在α另一侧,点B,C,D∈a.线段AB,AC,AD分别交α于点E,F,G.若BD=4,CF=4,AF=5,则EG=________.解析:A∉a,则点A与直线a确定一个平面,即平面ABD.因为a∥α,且α∩平面ABD=EG,所以a∥EG,即BD∥EG.所以eq\f(AF,AC)=eq\f(AE,AB).又eq\f(EG,BD)=eq\f(AE,AB),所以eq\f(AF,AC)=eq\f(EG,BD).于是EG=eq\f(AF·BD,AC)=eq\f(5×4,5+4)=eq\f(20,9).答案:eq\f(20,9)7.已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,则α∥β;③若a∥α,a∥β,则α∥β;④若a⊂α,a∥β,α∩β=b,则a∥b.其中正确命题的序号是________.解析:①错误,α与β也可能相交;②正确,设a,b确定的平面为γ,依题意,得γ∥α,γ∥β,故α∥β;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.答案:②④三、解答题(每小题10分,共20分)8.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC.证明:取线段AB的中点N,连接MN,DN,因为MN是△ABE的中位线,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD是正三角形,N是线段AB的中点,所以ND⊥AB.因为CB=CD,∠BCD=120°,所以∠CBD=30°,所以∠ABC=60°+30°=90°,所以BC⊥AB,所以ND∥BC.又ND⊄平面BEC,BC⊂平面BEC,所以ND∥平面BEC.又MN∩ND=N,所以平面MND∥平面BEC.因为直线DM⊂平面MND,所以DM∥平面BEC.9.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:GH∥PA.证明:如图所示,连接AC交BD于点O,连接MO.∵ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥MO,而AP⊄平面BDM,OM⊂平面BDM,∴PA∥平面BMD,又∵PA⊂平面PAHG,平面PAHG∩平面BMD=GH,∴PA∥GH.10.如图,四棱锥S-ABCD的所有的棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.2+eq\r(3) B.3+eq\r(3)C.3+2eq\r(3) D.2+2eq\r(3)解析:因为CD∥AB,AB⊂平面SAB,CD⊄平面SAB,所以CD∥平面SAB.又CD⊂平面CDEF,平面SAB∩平面CDEF=EF,所以CD∥EF,所以四边形CDEF为等腰梯形,且CD=2,EF=1,DE=CF=eq\r(3),所以四边形CDEF的周长为3+2eq\r(3),选C.答案:C11.如图,四边形ABCD是空间四边形,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB=______________.解析:因为AC∥平面EFGH,所以EF∥AC,HG∥AC.所以EF=HG=eq\f(BE,BA)·m.同理,EH=FG=eq\f(AE,AB)·n.因为四边形EFGH是菱形,所以eq\f(BE,AB)·m=eq\f(AE,AB)·n,所以AE∶EB=m∶n.答案:m∶n12.如图所示,在三棱柱ABC-A1B1C1中,平面ABC∥平面A1B1C1.若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?并证明你的结论.解析:当E为棱AB的中点时,DE∥平面AB1C1.证明如下:如图所示,取BB1的中点F,连接EF,FD,DE,AC1.因为D,E,F分别为CC1,AB,BB1的中点,所以EF∥AB1.因为AB1⊂平面AB1C1,EF⊄平面AB1C1,所以EF∥平面AB1C1.同理可证FD∥平面AB1C1.因为EF∩FD=F,所以平面EFD∥平面AB1C1.因为DE⊂平面EFD,所以DE∥平面AB1C1.13.如图所示,四边形EFGH为空间四面体ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.解析:(1)证明:因为四边形EFGH为平行四边形,所以EF∥HG.因为HG⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.因为EF⊂平面ABC,平面ABD∩平面ABC=AB,所以EF∥AB,所以AB∥平面EFGH.同理,可证CD∥平面EFGH.(2)设EF=x(0<x<4),由(1)知,eq\f(CF,CB)=eq\f(x,4).则eq\f(FG,6)=eq\f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年银行从业资格(中级)《风险管理》考试题库及答案解析(单选题)
- 重庆人文科技学院《统计学》2022-2023学年第一学期期末试卷
- 重庆财经学院《智慧物流与大数据》2021-2022学年第一学期期末试卷
- 重庆三峡学院《机械设计》2021-2022学年第一学期期末试卷
- 重庆三峡学院《合唱》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《色彩基础水彩技法》2021-2022学年第一学期期末试卷
- 重庆财经学院《算法设计与分析》2022-2023学年期末试卷
- 茶叶加工直播课程设计
- 茶叶冲泡工艺的研究报告
- 重庆财经学院《信息检索与利用》2021-2022学年第一学期期末试卷
- 2023年中国石化招聘笔试真题
- 中国普通食物营养成分表(修正版)
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 清华大学出版社机械制图习题集参考答案(课堂PPT)
- CRRT实施期间抗菌药物剂量调整
- 禾本科及莎草科园林植物术语图解
- 附件1:中央电大护理专业本科通科实习出科考核病历
- 高中化学趣味知识竞赛(课堂PPT)
- 卫生部城社区卫生服务中心基本标准
- 2021年考研英语真题(含答案解析).doc
评论
0/150
提交评论