下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.合情推理【学习目标】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.【知识导学】1.归纳推理和类比推理定义特征归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理归纳推理是由部分到整体,由个别到一般的推理类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理类比推理是由特殊到特殊的推理2.合情推理(1)含义归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.(2)合情推理的过程eq\x(从具体问题出发)→eq\x(观察、分析、比较、联想)→eq\x(归纳、类比)→eq\x(提出猜想)【预习检测】1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色B.黑色C.白色可能性大D.黑色可能性大3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为eq\f(n(n+1),2)=eq\f(1,2)n2+eq\f(1,2)n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=eq\f(1,2)n2+eq\f(1,2)n,正方形数N(n,4)=n2,五边形数N(n,5)=eq\f(3,2)n2-eq\f(1,2)n,六边形数N(n,6)=2n2-n………可以推测N(n,k)的表达式,由此计算N(10,24)=____________.探究点一归纳推理例1已知数列{an}的第1项a1=1,且an+1=eq\f(an,1+an)(n=1,2,3,…),试归纳出这个数列的通项公式.例2在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)=______;f(n)=______(答案用含n的代数式表示).探究点二类比推理例3在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是_____________________________________【当堂检测】1已知数列{an}满足a1=1,an+1=2an+1(n=1,2,3,…),(1)求a2,a3,a4,a5;(2)归纳猜想通项公式an.2在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N*)边形有几条对角线?3(1)如图所示,在△ABC中,射影定理可表示为a=b·cosC+c·cosB,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.(2)已知在Rt△ABC中,AB⊥AC,AD⊥BC于D,有eq\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购车协议书范本格式2000字
- 2024智能支付设备采购与安装合同2篇
- 二零二四年度企业文化建设与员工培训服务合同
- 《防雷知识讲座压缩》课件
- 《纤维素共生物》课件
- 中班美术活动:春天的故事
- 下雨路滑注意安全幼儿园
- 广告制作安装服务合同
- 班费收支管理
- 夫妻双方2024年度离婚后的古董分配及拍卖权合同
- 新能源汽车的市场价格变化趋势
- 护理职业生涯规划书成长赛道
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 三体二黑暗森林
- 2023年1月福建高中学业水平合格性考试语文试卷真题(含答案)
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)7病句 试卷(含答案解析)
- 设备撞件不良分析报告
- 呼吸科进修总结汇报
- 小学语文新课程标准解读课件
- 作业治疗学:第八章矫形器
评论
0/150
提交评论