



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学业分层测评(八)学业达标]1.设矩阵M=eq\b\lc\[\rc\](\a\vs4\al\co1(12,43)).(1)求矩阵M的逆矩阵M-1;(2)求矩阵M的特征值.【解】(1)矩阵A=eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))(ad-bc≠0)的逆矩阵为A-1=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(d,ad-bc)\f(-b,ad-bc),\f(-c,ad-bc)\f(a,ad-bc)))所以矩阵M的逆矩阵M-1=eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(3,5)\f(2,5),\f(4,5)-\f(1,5))).(2)矩阵M的特征多项式为f(λ)=eq\b\lc\|\rc\|(\a\vs4\al\co1(λ-1-2,-4λ-3))=λ2-4λ-5.令f(λ)=0,得到M的特征值为-1或5.2.(江苏高考)已知矩阵A的逆矩阵A-1=eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(1,4)\f(3,4),\f(1,2)-\f(1,2))),求矩阵A的特征值.【导学号:30650052】【解】因为A-1A=E,所以A=(A-1)-1.因为A-1=eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(1,4)\f(3,4),\f(1,2)-\f(1,2))),所以A=(A-1)-1=eq\b\lc\[\rc\](\a\vs4\al\co1(23,21)),于是矩阵A的特征多项式为f(λ)=eq\b\lc\[\rc\](\a\vs4\al\co1(λ-2-3,-2λ-1))=λ2-3λ-4.令f(λ)=0,解得A的特征值λ1=-1,λ2=4.3.已知二阶矩阵A的属于特征值-2的一个特征向量为eq\b\lc\[\rc\](\a\vs4\al\co1(1,-3)),属于特征值2的一个特征向量为eq\b\lc\[\rc\](\a\vs4\al\co1(1,1)),求矩阵A.【解】设A=eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd)),由题意知eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(1,-3))=eq\b\lc\[\rc\](\a\vs4\al\co1(-2,6)),eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(1,1))=eq\b\lc\[\rc\](\a\vs4\al\co1(2,2)),即eq\b\lc\{(\a\vs4\al\co1(a-3b=-2,,c-3d=6,,a+b=2,,c+d=2,))解得eq\b\lc\{(\a\vs4\al\co1(a=1,,b=1,,c=3,,d=-1,))∴A=eq\b\lc\[\rc\](\a\vs4\al\co1(11,3-1)).4.已知二阶矩阵M有特征值λ=3及对应的一个特征向量α1=eq\b\lc\[\rc\](\a\vs4\al\co1(1,1)),并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.【解】设M=eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd)),则eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(1,1))=3eq\b\lc\[\rc\](\a\vs4\al\co1(1,1))=eq\b\lc\[\rc\](\a\vs4\al\co1(3,3)),故eq\b\lc\{(\a\vs4\al\co1(a+b=3,,c+d=3.))eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(-1,2))=eq\b\lc\[\rc\](\a\vs4\al\co1(\a\vs4\al(9,15))),故eq\b\lc\{(\a\vs4\al\co1(-a+2b=9,,-c+2d=15.))联立以上两方程组解得a=-1,b=4,c=-3,d=6,故M=eq\b\lc\[\rc\](\a\vs4\al\co1(-14,-36)).5.已知α是矩阵M的属于特征值λ=3的一个特征向量,其中M=eq\b\lc\[\rc\](\a\vs4\al\co1(am,2b)),α=eq\b\lc\[\rc\](\a\vs4\al\co1(-1,5)),且a+b+m=3,求a,b,m的值.【解】因为α是矩阵M的属于特征值λ=3的一个特征向量,所以Mα=λα,即eq\b\lc\[\rc\](\a\vs4\al\co1(am,2b))eq\b\lc\[\rc\](\a\vs4\al\co1(-1,5))=3eq\b\lc\[\rc\](\a\vs4\al\co1(-1,5)),所以eq\b\lc\{(\a\vs4\al\co1(-a+5m=-3,,-2+5b=15,))由a+b+m=3,解得a=eq\f(1,6),b=eq\f(17,5),m=-eq\f(17,30).6.已知矩阵A=eq\b\lc\[\rc\](\a\vs4\al\co1(20,0-1)).(1)求矩阵A-1;(2)求逆矩阵A-1的特征值及特征向量;(3)对任意向量α=eq\b\lc\[\rc\](\a\vs4\al\co1(x,y)),求(A-1)20α.【解】(1)det(A)=2×(-1)-0×0=-2,∴A-1=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2)0,0-1)).(2)f(λ)=eq\b\lc\|\rc\|(\a\vs4\al\co1(λ-\f(1,2)0,0λ+1))=eq\b\lc\(\rc\)(\a\vs4\al\co1(λ-\f(1,2)))(λ+1),令f(λ)=0,得A-1的特征值λ1=eq\f(1,2),λ2=-1,属于特征值λ1=eq\f(1,2)的一个特征向量α1=eq\b\lc\[\rc\](\a\vs4\al\co1(1,0)),属于特征值λ2=-1的一个特征向量α2=eq\b\lc\[\rc\](\a\vs4\al\co1(0,1)).(3)设eq\b\lc\[\rc\](\a\vs4\al\co1(x,y))=xeq\b\lc\[\rc\](\a\vs4\al\co1(1,0))+yeq\b\lc\[\rc\](\a\vs4\al\co1(0,1)),∴(A-1)20α=x·(λ1)20α1+y(λ2)20α2=eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(20)x,y))=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(x,220),y)).7.(福建高考)已知矩阵A的逆矩阵A-1=eq\b\lc\(\rc\)(\a\vs4\al\co1(\a\vs4\al(21,12))).①求矩阵A;②求矩阵A-1的特征值以及属于每个特征值的一个特征向量.【导学号:30650053】【解】①因为矩阵A是矩阵A-1的逆矩阵,且|A-1|=2×2-1×1=3≠0,所以A=eq\f(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\a\vs4\al(2-1,-12)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)-\f(1,3),-\f(1,3)\f(2,3))).②矩阵A-1的特征多项式为f(λ)=eq\b\lc\|\rc\|(\a\vs4\al\co1(λ-2-1,-1λ-2))=λ2-4λ+3=(λ-1)(λ-3),令f(λ)=0,得矩阵A-1的特征值为λ1=1或λ2=3,所以ξ1=eq\b\lc\(\rc\)(\a\vs4\al\co1(\a\vs4\al(1,-1)))是矩阵A-1的属于特征值λ1=1的一个特征向量,ξ2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\a\vs4\al(1,1)))是矩阵A-1的属于特征值λ2=3的一个特征向量.能力提升]8.已知矩阵M有特征值λ1=4及对应的一个特征向量α1=eq\b\lc\[\rc\](\a\vs4\al\co1(2,3)),并有特征值λ2=-1及对应的一个特征向量α2=eq\b\lc\[\rc\](\a\vs4\al\co1(1,-1)).(1)求矩阵M;(2)求M2016α2.【解】(1)令M=eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd)),则由特征值与特征向量的定义,得Mα1=λ1α1,Mα2=λ2α2,即有eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(2,3))=4eq\b\lc\[\rc\](\a\vs4\al\co1(2,3))且eq\b\lc\[\rc\](\a\vs4\al\co1(ab,cd))eq\b\lc\[\rc\](\a\vs4\al\co1(1,-1))=-eq\b\lc\[\rc\](\a\vs4\al\co1(1,-1)),即eq\b\lc\{(\a\vs4\al\co1(2a+3b=8,,2c+3d=12,,a-b=-1,,c-d=1.)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届甘肃省临洮县全国初三冲刺考(四)全国I卷物理试题含解析
- 威海市古寨中学2025年初三4月百千联考英语试题含答案
- 湖南省湘西土家族苗族自治州花垣县2025届四下数学期末调研模拟试题含解析
- 武昌职业学院《C4D动画综合》2023-2024学年第二学期期末试卷
- 中医健康养生知识科普讲座
- 上消化道病人出血护理
- 广告传媒行业报告模板
- 学校文化建设与文化管理-培训课件
- 2025房地产经纪人协理-《房地产经纪综合能力》考前通关必练题库-含答案
- 心理健康与养生
- 吉塔行星模拟课程
- 献身国防事业志愿书,空军
- 广东省建筑施工安全管理资料统一用表2021年版(原文格式版)
- 【企业招聘管理研究国内外文献综述】
- 筒子形成及卷绕成型分析
- 五年级道德与法治下册作业设计优秀案例
- 社会工作师职业资格考试
- 风电工程建设标准强制性条文
- MT/T 240-1997煤矿降尘用喷嘴通用技术条件
- GB/T 17460-1998化学转化膜铝及铝合金上漂洗和不漂洗铬酸盐转化膜
- GB 6245-2006消防泵
评论
0/150
提交评论