版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<12.下列计算正确的是()A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=23.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有().A.3个 B.2个 C.1个 D.0个4.如图,已知第一象限内的点A在反比例函数y=2x上,第二象限的点B在反比例函数y=kxA.﹣22 B.4 C.﹣4 D.225.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm21.522.022.523.023.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数 B.加权平均数 C.众数 D.中位数6.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm7.某班
30名学生的身高情况如下表:身高人数134787则这
30
名学生身高的众数和中位数分别是A., B.,C., D.,8.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=9.计算a•a2的结果是()A.aB.a2C.2a2D.a310.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b311.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20° B.35° C.45° D.70°12.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.14.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.15.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.17.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.18.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:填空:a=,b=,c=;若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.20.(6分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.21.(6分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.22.(8分)先化简,再求值:,其中m=2.23.(8分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.24.(10分)解方程组:.25.(10分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:;若,,,求的长.26.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.27.(12分)如图,中,,于,,为边上一点.(1)当时,直接写出,.(2)如图1,当,时,连并延长交延长线于,求证:.(3)如图2,连交于,当且时,求的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
将关于x的一元二次方程化成标准形式,然后利用Δ>0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.2、B【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A.,故A选项错误。B.,故B选项正确。C.,故C选项错误。D.,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。3、A【解析】3+3=6,错误,无法计算;②=1,错误;③+==2不能计算;④=2,正确.故选A.4、C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.5、C【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、C【解析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为(cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.7、A【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.【详解】解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、D【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.9、D【解析】a·a2=a3.故选D.10、B【解析】
由整数指数幂和分式的运算的法则计算可得答案.【详解】A项,根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项,根据“同底数幂相除,底数不变,指数相减”可得:a6÷a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项,根据“积的乘方等于乘方的积”可得:,故D项错误;故本题正确答案为B.【点睛】幂的运算法则:(1)同底数幂的乘法:(m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方:(n是正整数)(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)(5)零次幂:(a≠0)(6)负整数次幂:(a≠0,p是正整数).11、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.12、D【解析】
分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2:1.【解析】
过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.14、45°【解析】试题解析:如图,连接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案为15、1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.16、2【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.【详解】解:连接BD,∵AB是⊙O的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB•cos60°=4×=2.故答案为2.17、﹣1<a<1【解析】
解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a-1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a-1>a+1,解得:无解;②当点(a-1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案为:-1<a<1.【点睛】本题考查反比例函数的性质.18、75【解析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)众数为15;(2)3,4,15;8;(3)月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】
根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.20、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;【详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,∴OF=1,,.∵E是正方形ABCD的“关联点”,∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),∵点E在直线上,∴点E在线段FG上.分别作FF’⊥x轴,GG’⊥x轴,∵OF=1,,∴,.∴.根据对称性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如图4中,∵,,∴.∴.综上:.【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.21、证明见解析.【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.【详解】∵四边形内接于圆,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.22、,原式.【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【详解】原式,当m=2时,原式.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23、(1)E(2,1);(2);(1).【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;(1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.【详解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为1,∴E(2,1);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的纵坐标为1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.24、【解析】
方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:则原方程组的解为【点睛】本题主要考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版城市更新回迁协议范本(含产权过户)3篇
- 二零二五年度针对乙方利益最大化的仓储设施租赁协议3篇
- 二零二五版个人住房贷款贷款资料保存及保密协议3篇
- 2024版临时设施租赁合同(建筑工地用)
- 二零二五年度知识产权质押担保合同模板汇编及操作流程3篇
- 2025年度教育机构租赁合同关于设施设备维护的补充协议2篇
- 武汉晴川学院《性别、婚姻与家庭》2023-2024学年第一学期期末试卷
- 二零二五年度企业资产剥离合同
- 2024版洗衣机销售合同模板范本
- 二零二五版房地产项目投资合作框架协议范本剖析6篇
- 服务经营培训课件ppt 老客户经营综合版
- MT/T 199-1996煤矿用液压钻车通用技术条件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力学性能试验第1部分:桌类强度和耐久性
- 第三方在线纠纷解决机制(ODR)述评,国际商法论文
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 第5章-群体-团队沟通-管理沟通
- 肾脏病饮食依从行为量表(RABQ)附有答案
- 深基坑-安全教育课件
- 园林施工管理大型园林集团南部区域养护标准图例
- 排水许可申请表
评论
0/150
提交评论