下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市芮城县陌南镇第二中学2021年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列中,,表示数列的前项和,则(
)A. B. C. D.参考答案:B2.已知向量a,若向量与垂直,则的值为
(
)A.
B.7
C.
D.参考答案:A3.不共面的四个定点到平面的距离都相等,这样的平面共有(
)
A.个
B.个
C.个
D.个参考答案:D
解析:四个点分两类:(1)三个与一个,有;(2)平均分二个与二个,有
共计有4.已知多项式,则=
A.32
B.42
C.46
D.56参考答案:C略5.某班级有50名学生,期中考试数学成绩X~N(120,σ2),已知P(X>140)=0.2,则X∈[100,140]的人数为A.5
B.10
C.20
D.30参考答案:D6.在一次试验中,测得的四组值分别是,则Y与X之间的回归直线方程为(
)A.
B.
C.D.参考答案:A7.对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使是坐标原点),则x0必然在下面哪个区间内?()A. B. C. D.参考答案:C【考点】对数函数的图象与性质.【分析】问题转化为x0是函数h(x)=x+lnx的零点,根据函数的零点的判断定理求出x0的范围即可.【解答】解:由题意得:==﹣1,即lnx0+x0=0,即x0是函数h(x)=x+lnx的零点,由h(x)在(0,+∞)是连续的递增函数,且h()=﹣1+<0,h()=>0,得h(x)在(,)有零点,即x0∈(,),故选:C.8.某物体的运动方程为,则改物体在时间上的平均速度为(
)A.
B.
C. D.参考答案:D略9.六件不同的奖品送给5个人,每人至少一件,不同的分法种数是
(
)A
B
C
D
参考答案:D10.如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则此圆锥的侧面积与全面积的比是(B)A. B.
C.
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设椭圆的左右焦点分别为F1,F2,点P在椭圆上运动,的最大值为m,?的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为.参考答案:[,1)【考点】椭圆的简单性质.【分析】由题椭圆定义利用配方法求得的最大值m,再由平面向量的坐标运算求得?的最小值n,由m≥2n,结合隐含条件求得椭圆的离心率的取值范围.【解答】解:∵|PF1|+|PF2|=2a,∴|PF2|=2a﹣|PF1|(a﹣c≤|PF1|≤a+c),∴|PF1|?|PF2|=|PF1|(2a﹣|PF1|)=﹣|PF1|2+2a|PF1|=﹣(|PF1|﹣a)2+a2∵a﹣c≤|PF1|≤a+c∴|PF1|?|PF2|=﹣(|PF1|﹣a)2+a2∈[b2,a2],∴的最大值m=a2;设P(x,y),则=(﹣c﹣x,﹣y)?(c﹣x,﹣y)=x2+y2﹣c2=x2+﹣c2=,∵x∈[﹣a,a],∴x2∈[0,a2],∴?的最小值为n=b2﹣c2,由m≥2n,得a2≥2(b2﹣c2)=2(a2﹣2c2)=2a2﹣4c2,∴a2≤4c2,解得.故答案为:.12.已知直线l:x﹣y+4=0与圆C:,则C上各点到l的距离的最小值为
.参考答案:考点:圆的参数方程;点到直线的距离公式.专题:计算题.分析:先再利用圆的参数方程设出点C的坐标,再利用点到直线的距离公式表示出距离,最后利用三角函数的有界性求出距离的最小值即可.解答: 解:,∴距离最小值为.故答案为:.点评:本小题主要考查圆的参数方程、点到直线的距离公式、三角函数的和角公式及及三角函数的性质等基础知识,考查运算求解能力、化归与转化思想.属于基础题.13.在中,已知,若分别是角所对的边,则的最小值为__▲
_.参考答案:【知识点】正弦定理、余弦定理、基本不等式【答案解析】解析:解:因为,由正弦定理及余弦定理得,整理得,所以,当且仅当a=b时等号成立.即的最小值为.【思路点拨】因为寻求的是边的关系,因此可分别利用正弦定理和余弦定理把角的正弦和余弦化成边的关系,再利用基本不等式求最小值.
14.在△ABC中,2sinAcosB=sinC,那么△ABC一定是*****
.参考答案:等腰三角形
略15.定义运算
已知函数则f(x)的最大值为_________参考答案:216.已知圆与圆相交,则实数的取值范围为_▲_.参考答案:17.函数的极大值为
.参考答案:e,在递增,在递减,在有极大值.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列的前n项和为,点在直线上.数列满足,前9项和为153.(Ⅰ)求数列、的通项公式;(Ⅱ)设,数列的前n和为,求使不等式对一切都成立的最大正整数k的值.参考答案:略19.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.参考答案:【考点】等差数列的前n项和.【分析】(1)由题意可知2a3=a1+a2,根据等比数列通项公式代入a1和q,进而可求得q.(II)讨论当q=1和q=﹣,时分别求得Sn和bn,进而根据Sn﹣bn与0的关系判断Sn与bn的大小,【解答】解:(1)由题意可知,2a3=a1+a2,即a(2q2﹣q﹣1)=0,∴q=1或q=﹣;(II)q=1时,Sn=2n+=,∵n≥2,∴Sn﹣bn=Sn﹣1=>0当n≥2时,Sn>bn.若q=﹣,则Sn=,同理Sn﹣bn=.∴2≤n≤9时,Sn>bn,n=10时,Sn=bn,n≥11时,Sn<bn.20.(本小题满分13分)
已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为。(1)求椭圆的标准方程;(2)过椭圆的右焦点F作直线交椭圆于两点,交于点,若,求的值。参考答案:21.圆的方程为x2+y2-6x-8y=0,过坐标原点作长为8的弦,求弦所在的直线方程。参考答案:22.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于8的概率;(2)若随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字3的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;转化思想;综合法;概率与统计.【分析】(Ⅰ)设A表示事件“抽取3张卡片上的数字之和大于或等于8”,任取三张卡片,利用列举法求出三张卡片上的数字全部可能的结果种数和数字之和大于或等于8的种数,由此能求出3张卡片上数字之和大于或等于8的概率.(Ⅱ)设B表示事件“至少一次抽到3”,利用列举法能求出两次抽取的卡片中至少一次抽到数字3的概率.【解答】解:(Ⅰ)设A表示事件“抽取3张卡片上的数字之和大于或等于8”,任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4种,数字之和大于或等于8的是(1、3、4),(2、3、4),共2种,所以P(A)=.…(Ⅱ)设B表示事件“至少一次抽到3”,第一次抽1张,放回后再抽取1张的全部可能结果为:(1、1)(1、2)(1、3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生家长会发言稿
- 托班学期工作计划范文汇编九篇
- 推门听课项目方案范文(6篇)
- 瑜伽系统提升课程设计
- 消防安全小班课程设计
- 2025年山东滨州医学院公开招聘工作人员24人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东淄博张店区招聘首批城乡公益性岗位人员700人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东淄博临淄区事业单位招聘工作人员75人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南平阴县教体事业单位招聘110人历年管理单位笔试遴选500模拟题附带答案详解
- 2024年海鲜运输保温协议-确保鲜活产品品质
- GB/T 44979-2024智慧城市基础设施紧凑型城市智慧交通
- 统编版2024-2025学年第一学期四年级语文期末学业质量监测试卷(含答案)
- 北师大版七年级上册数学期末考试试题附答案
- 理论力学知到智慧树章节测试课后答案2024年秋浙江大学
- 管理英语1-001-国开机考复习资料
- 《血管活性药物静脉输注护理》团体标准解读
- 机器学习-梯度下降法
- 期末综合测试卷(试题)-2024-2025学年四年级上册数学人教版
- 浙江省学军、镇海等名校2025届高考数学押题试卷含解析
- 个人消费贷款保证合同模板
- 黑龙江省哈尔滨市2023-2024学年七年级上学期期末统考学业水平调研测试语文试卷(解析版)
评论
0/150
提交评论