山西省运城市上郭中学2021年高二数学文月考试卷含解析_第1页
山西省运城市上郭中学2021年高二数学文月考试卷含解析_第2页
山西省运城市上郭中学2021年高二数学文月考试卷含解析_第3页
山西省运城市上郭中学2021年高二数学文月考试卷含解析_第4页
山西省运城市上郭中学2021年高二数学文月考试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市上郭中学2021年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题错误的是

A.“x<0”是“”的充分不必要条件

B.若命题

C.若为假命题,则p,q均为假命题

D.命题“若”的逆否命题为“若”参考答案:C2.已知两点P1(2,7),P2(6,5),则以线段P1P2为直径的圆的标准方程是(

)A.(x﹣4)2+(y﹣6)2=5 B.(x﹣4)2+(y﹣6)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x﹣6)2+(y﹣4)2=25参考答案:A【考点】圆的标准方程.【专题】计算题;方程思想;综合法;直线与圆.【分析】由已知两点的坐标,利用中点坐标公式求出其中点M的坐标,即为所求圆心坐标,再由两点坐标,利用两点间的距离公式求出两点间的距离,即为圆的直径,进而求出圆的半径,根据求出的圆心坐标和圆的半径写出所求圆的标准方程即可.【解答】解:设线段P1P2的中点为M,∵P1(2,7),P2(6,5),∴圆心M(4,6),又|P1P2|==2,∴圆的半径为|P1P2|=,则所求圆的方程为:(x﹣4)2+(y﹣6)2=5.故选:A.【点评】此题考查了圆的标准方程,涉及的知识有中点坐标公式,两点间的距离公式,灵活运用公式得出圆心坐标及半径是解本题的关键.3.如果直线是平面的斜线,那么在平面内

A.不存在与平行的直线

B.不存在与垂直的直线C.与垂直的直线只有一条

D.与平行的直线有无穷多条参考答案:A4.椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为(

A.或

B.

C.

D.

参考答案:A5.奇函数上为增函数,且,则不等式的解集为(

).AB.CD参考答案:C略6.的展开式中剔除常数项后的各项系数和为(

)A.-55 B.-61 C.-63 D.-73参考答案:D【分析】令得到所有系数和,再计算常数项为9,相减得到答案.【详解】令,得,而常数项为,所以展开式中剔除常数项各项系数和为,故选D.【点睛】本题考查了二项式系数和,常数项的计算,属于常考题型.7.“a=﹣1”是“直线ax+3y+2=0与直线x+(a﹣2)y+1=0平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线平行的等价条件以及充分条件和必要条件的定义进行判断即可.【解答】解:若a=﹣1,则两条直线方程分别为﹣x+3y+2=0与x﹣y+1=0此时两直线平行,即充分性成立,若两直线平行,则ax+3y+2=0的斜截式方程为y=﹣x﹣,则直线斜率k=﹣,x+(a﹣2)y+1=0的斜截式方程为为y=﹣x﹣,(a≠2)若两直线平行则﹣=﹣,且﹣≠﹣,由﹣=﹣,得a(a﹣2)=3,即a2﹣2a﹣3=0得a=﹣1或a=3,由﹣≠﹣得a≠,即“a=﹣1”是“直线ax+3y+2=0与直线x+(a﹣2)y+1=0平行”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用直线平行的等价条件是解决本题的关键.8.给定两个命题p,q,若是q的必要而不充分条件,则p是的(

)A.充分不必要条件

B.必要而不充分条件C.充要条件

D.既不充分也不必要条件参考答案:A9.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则(

)A.甲可以知道四人的成绩 B.丁可以知道四人的成绩C.甲、丁可以知道对方的成绩 D.甲、丁可以知道自己的成绩参考答案:D【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了.【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选:D.【点睛】本题考查了推理与证明,关键是找到推理的切入点.10.若变量x,y满足约束条件则z=2x+y的最大值为()A.1

B.2

C.3 D.4参考答案:作出点(x,y)满足的区域如图,解方程组得到点A坐标为(1,1),由直线的位置关系知目标函数在A(1,1)点取得最大值3.答案:C二、填空题:本大题共7小题,每小题4分,共28分11.无论取何实数时,直线恒过定点,求定点的坐标为

.参考答案:12.曲线y=和y=x2在它们的交点处的两条切线与x轴所围成的三角形的面积是.参考答案:

【考点】直线的点斜式方程.【分析】本题可以先求出交点坐标,再求解交点处的两个方程,然后分别解出它们与x轴的交点坐标,计算即可.【解答】解:联立方程解得曲线和y=x2在它们的交点坐标是(1,1),则易得两条切线方程分别是y=﹣x+2和y=2x﹣1,y=0时,x=2,x=,于是三角形三顶点坐标分别为(1,1);(2,0);(,0),s=×,即它们与x轴所围成的三角形的面积是.【点评】本题考查了直线的点斜式方程的求法,应注意掌握好这一基本方法.13.一项“过关游戏”的规则规定:在第n关要抛一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。则连过前3关的概率为_________.参考答案:

解析:由于骰子是均匀正方体,所以抛掷后各点数出现的可能性是相等的.设事件An为“第n次过关失败”,则对立事件Bn为“第n次过关成功”第n次游戏中,基本事件总数为6n

第1关:事件Al所含基本事件数为2(即出现点数1和2两种情况).所以过此关的概率为P(B1)=1-

P(A1)=;

第2关:事件A2所含基本事件数为方程x+y=a当a分别取2、3、4时的正整数解组数之和,即6个.所以过此关概率为P(B2)=1-P(A2)=;

第3关:事件A3所含基本事件数为方程x+y+z=a当a分别取3、4、5、6、7、8时的正整数解组数之和,即56个.所以过此关概率为P(B3)=1-P(A3)=;

故连过三关的概率为P(B1)×P(B2)×P(B3)=14.在R上定义运算⊙:⊙,则满足⊙的实数的取值范围是__________。参考答案:(-2,1)15.复数在复平面内对应的点位于第

象限.参考答案:四略16.右上边程序执行后输出的结果是------------------------------------(

)A、

B、

C、

D、参考答案:B略17.某程序框图如图,则该程序运行后输出的值为

参考答案:49试题分析:输出n=49.考点:程序框图和算法.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求函数的最大值;(2)设,且,证明:.参考答案:(1)0;(2)见解析【分析】(1)由题意,求得函数的导数,利用导数得到函数的单调性,即可求解最大值.(2)由(1),把当-1<x<0时,g(x)<1等价于设f(x)>x,构造新函数h(x)=f(x)-x,利用导数得到函数的单调性和极值,即可求解.【详解】(1)由题意,求得.当x∈(-∞,0)时,>0,f(x)单调递增;当x∈(0,+∞)时,<0,f(x)单调递减.所以f(x)的最大值为f(0)=0.(2)由(1)知,当x>0时,f(x)<0,g(x)<0<1.当-1<x<0时,g(x)<1等价于设f(x)>x.设h(x)=f(x)-x,则.当x∈(-1,-0)时,0<-x<1,0<<1,则0<<1,从而当x∈(-1,0)时,<0,h(x)在(-1,0)单调递减.当-1<x<0时,h(x)>h(0)=0,即g(x)<1.综上,总有g(x)<1.【点睛】本题主要考查导数在函数中的应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3.(1)求证:AC⊥平面BDE;(2)求直线与平面所成的角的正弦值;(3)线段BD上是否存在点M,使得AM∥平面BEF?若存在,试确定点M的位置;若不存在,说明理由.参考答案:(Ⅰ)证明:∵平面,∴.

………………2分∵是正方形,∴,又从而平面.………4分

(Ⅱ)解:因为两两垂直,所以建立空间直角坐标系如图所示.∵,由AF∥DE,DE=3AF=3得AF=1.………6分则,………………7分设平面BEF的法向量为,则,即,令,则.

……………8分∵∴直线AB与平面所成的角满足……………Ks5u………………10分

(Ⅲ)解:点M是线段BD上一个点,设,则,∵AM∥平面BEF,∴,………………11分即,解得.

…………12分此时,点M坐标为.………………13分

略20.已知四棱锥的底面为直角梯形,,底面,且,是的中点.(1)证明:面面;(2)求直线与所成角的余弦值;(3)求二面角的余弦值.参考答案:(1)详见解析;(2);(3).试题分析:(1)根据面面垂直的判定定理,要证明面面垂直,先证明线面垂直,根据垂直关系,可证明平面;(2)几何法求异面直线所成的角,通过平移直线,将异面直线转化为相交直线所成的角,取中点,中点,连结,则,长至点,使得,连结,则,所以或其补角为直线与所成的角,在三角形内,根据余弦定理求角;(3)因为H和全等,过点作,连结,所以,故为二面角的平面角,同样根据余弦定理求解;或是根据向量法求后两问.试题解析:(1)因为且,所以因为面,所以,而,所以面,又面,所以面面方法一:(2)取中点,中点,连结,则,且。延长至点,使得,连结,则,且,所以或其补角为直线与所成的角。易得,,,所以,故所求直线与所成角的余弦值为(3)过点作,连结,因为,,是和公共边,所以,故为二面角的平面角,易得,而,所以,所以所以所求的二面角的余弦值为。

方法二:(2)以为轴,为轴,为轴建立空间直角坐标系,则,,,,,则,于是,,故,故所求直线与所成角的余弦值为(3)由(2)知,,,设面的一个法向量为,由且,得,则,取,则,故设面的一个法向量为,由且,得,则,取,则,故所以由图可知,此二面角为钝二面角,所以所求的二面角的余弦值为考点:1.线线,线面,面面垂直关系;2.异面直线所成角;3.二面角.21.如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.(1)求点M的轨迹方程;(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B的距离和为定值,求点P的轨迹E的方程;(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.参考答案:解:(Ⅰ)设点M的坐标为M(x,y)(x≠0),则又由AC⊥BD有,即,∴x2+y2=1(x≠0).

(Ⅱ)设P(x,y),则,代入M的轨迹方程有即,∴P的轨迹为椭圆(除去长轴的两个端点).要P到A、B的距离之和为定值,则以A、B为焦点,故.∴

从而所求P的轨迹方程为9x2+y2=1(x≠0)(Ⅲ)易知l的斜率存在,设方程为

联立9x2+y2=1,有

设P(x1,y1),Q(x2,y2),则令,则且,所以当,即也即时,面积取最大值,最大值为.略22.已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)过点P(0,3)的直线m与轨迹C交于A,B两点.若A是PB的中点,求直线m的斜率.参考答案:【考点】直线与圆锥曲线的综合问题;曲线与方程.【专题】压轴题;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接由题目给出的条件列式化简即可得到动点M的轨迹C的方程;(Ⅱ)经分析当直线m的斜率不存在时,不满足A是PB的中点,然后设出直线m的斜截式方程,和椭圆方程联立后整理,利用根与系数关系写出x1+x2,x1x2,结合2x1=x2得到关于k的方程,则直线m的斜率可求.【解答】解:(Ⅰ)点M(x,y)到直线x=4的距离是它到点N(1,0)的距离的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论