版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——2022中考数学试卷答案
中考网权威发布2022中考数学备考专项练习:相交线与平行,更多2022中考数学备考专项练习相关信息请访问中考网。一、选择题
1.(2022上海,第4题4分)如图,已知直线a、b被直线c所截,那么∠1的同位角是()
A.∠2B.∠3C.∠4D.∠5
考点:同位角、内错角、同旁内角.
分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,那么这样一对角叫做同位角可得答案.
解答:解:∠1的同位角是∠2,
应选:A.
点评:此题主要测验了同位角,关键是掌管同位角的边构成“F“形.
2.(2022四川巴中,第3题3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,那么∠B的度数为()
A.80°B.40°C.60°D.50°
考点:平行线的性质;角平分线的定义.
分析:根据角平分线的定义可得∠FCM=∠ACF,再根据两直线平行,同位角相等可得∠B=∠FCM.
解答:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,
∴∠B=∠FCM=50°.应选D.
点评:此题测验了平行线的性质,角平分线的定义,是根基题,熟记性质并切实识图是解题的关键.
3.(2022山东枣庄,第3题3分)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,那么∠D的度数为()
A.17°B.34°C.56°D.124°
考点:平行线的性质;直角三角形的性质
分析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.
解答:解:∵AB∥CD,
∴∠DCE=∠A=34°,
∵∠DEC=90°,
∴∠D=90°﹣∠DCE=90°﹣34°=56°.
应选C.
点评:此题测验了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.
4.(2022湖南怀化,第2题,3分)将一向角三角板与两边平行的纸条如图放置.已知∠1=30°,那么∠2的度数为()
A.30°B.45°C.50°D.60°
考点:平行线的性质.
专题:计算题.
分析:根据平行线的性质得∠2=∠3,再根据互余得到∠1=60°,所以∠2=60°.
解答:解:∵a∥b,
∴∠2=∠3,
∵∠1+∠3=90°,
∴∠1=90°﹣30°=60°,
∴∠2=60°.
应选D.
点评:此题测验了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
5.(2022湖南张家界,第2题,3分)限如图,已知a∥b,∠1=130°,∠2=90°,那么∠3=()
A.70°B.100°C.140°D.170°
考点:平行线的性质.
分析:延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答:解:如图,延长∠1的边与直线b相交,
∵a∥b,
∴∠4=180°﹣∠1=180°﹣130°=50°,
由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.
应选C.
点评:此题测验了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅佐线是解题的关键.
6.(2022山东聊城,第4题,3分)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,假设∠1=27°,那么∠2的度数为()
A.53°B.55°C.57°D.60°考点:平行线的性质.
分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.
解答:解:由三角形的外角性质,∠3=30°+∠1=30°+27°=57°,
∵矩形的对边平行,
∴∠2=∠3=57°.
应选C.
点评:此题测验了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
7.(2022遵义4.(3分))如图,直线l1∥l2,∠A=125°,∠B=85°,那么∠1+∠2=()
A.30°B.35°C.36°D.40°
考点:平行线的性质.
分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.
解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,
∴∠3=∠1,∠4=∠2,
∵l1∥l2,
∴AC∥BD,
∴∠CAB+∠ABD=180°,
∴∠3+∠4=125°+85°﹣180°=30°,
∴∠1+∠2=30°.
应选A.
点评:此题测验了平行线的性质,熟记性质并作辅佐线是解题的关键.
8.(2022十堰2.(3分))如图,直线m∥n,那么∠α为()
A.70°B.65°C.50°D.40°
考点:平行线的性质.
分析:先求出∠1,再根据平行线的性质得出∠α=∠1,代入求出即可.
解答:解:
∠1=180°﹣130°=50°,
∵m∥n,
∴∠α=∠1=50°,
应选C.
点评:此题测验了平行线的性质的应用,留神:两直线平行,同位角相等.
9.(2022娄底9.(3分))如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,假设∠1=40°,那么∠2=()
A.40°B.45°C.50°D.60°
考点:平行线的性质.
分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.
解答:解:∵∠∠1+∠3=90°,∠1=40°,
∴∠3=50°,
∵AB∥CD,
∴∠2=∠3=50°.
应选:C.
点评:此题测验了平行线的性质.解题的关键是留神掌管两直线平行,同位角相等定理的应用.
10.(2022年湖北咸宁5.(3分))如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,那么∠2的度数为()
A.60°B.45°C.40°D.30°
考点:平行线的性质;等边三角形的性质
分析:延长AC交直线m于D,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠3,再根据两直线平行,内错角相等解答即可.
解答:解:如图,延长AC交直线m于D,
∵△ABC是等边三角形,
∴∠3=60°﹣∠1=60°﹣20°=40°,
∵l∥m,
∴∠2=∠3=40°.
应选C.
点评:此题测验了平行线的性质,等边三角形的性质,熟记性质并作辅佐线是解题的关键,也是此题的难点.
11.(2022江苏苏州,第2题3分)已知∠α和∠β是对顶角,若∠α=30°,那么∠β的度数为()
A.30°B.60°C.70°D.150°
考点:对顶角、邻补角
分析:根据对顶角相等可得∠β与∠α的度数相等为30°.
解答:解:∵∠α和∠β是对顶角,∠α=30°,
∴根据对顶角相等可得∠β=∠α=30°.
应选:A.
点评:此题主要测验了对顶角相等的性质,对比简朴.
12.(2022山东临沂,第3题3分)如图,已知l1∥l2,∠A=40°,∠1=60°,那么∠2的度数为()
A.40°B.60°C.80°D.100°
考点:平行线的性质;三角形的外角性质.
分析:根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答:解:∵l1∥l2,
∴∠3=∠1=60°,
∴∠2=∠A+∠3=40°+60°=100°.
应选D.
点评:此题测验了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并切实识图是解题的关键.
13.(2022四川南充,第4题,3分)如图,已知AB∥CD,∠C=65°,∠E=30°,那么∠A的度数为()
A.30°B.32.5°C.35°D.37.5°
分析:根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.
解:设AB、CE交于点O.
∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,
∵∠E=30°,∴∠A=∠EOB﹣∠E=35°,应选C.
点评:此题测验了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB的度数和得出∠A=∠EOB﹣∠E.
14.(2022甘肃白银、临夏,第5题3分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()
A.4个B.3个C.2个D.1个考点:平行线的性质;余角和补角.
分析:由互余的定义、平行线的性质,利用等量代换求解即可.
解答:解:∵斜边与这根直尺平行,
∴∠α=∠2,
又∵∠1+∠2=90°,
∴∠1+∠α=90°,
又∠α+∠3=90°
∴与α互余的角为∠1和∠3.
应选C.
点评:此题测验的是对平行线的性质的理解,目的是找出与∠α和为90°的角.
15.(2022广东梅州,第5题3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.假设∠1=20°,那么∠2的度数是()
A.15°B.20°C.25°D.30°
考点:平行线的性质.
分析:根据两直线平行,内错角相等求出∠3,再求解即可.
解答:解:∵直尺的两边平行,∠1=20°,
∴∠3=∠1=20°,
∴∠2=45°﹣20°=25°.
应选C.
点评:此题测验了两直线平行,内错角相等的性质,是根基题,熟记性质是解题的关键.
16.(2022年广东汕尾,第6题4分)如图,能判定EB∥AC的条件是()
A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE
分析:在繁杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
解:A和B中的角不是三线八角中的角;
C中的角是同一三角形中的角,故不能判定两直线平行.
D中内错角∠A=∠ABE,那么EB∥AC.应选D.
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
17.(2022襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,那么∠1等于()
A.35°B.45°C.55°D.65°
考点:平行线的性质;直角三角形的性质
分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.
解答:解:如图,∵BC⊥AE,
∴∠ACB=90°.
∴∠A+∠B=90°.
又∵∠B=55°,
∴∠A=35°.
又CD∥AB,
∴∠1=∠B=35°.
应选:A.
点评:此题测验了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.
18.(2022邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,那么∠ADE的大小是()
A.45°B.54°C.40°D.50°
考点:平行线的性质;三角形内角和定理
分析:根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.
解答:解:∵∠B=46°,∠C=54°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,
∵AD平分∠BAC,
∴∠BAD=∠BAC=×80°=40°,
∵DE∥AB,
∴∠ADE=∠BAD=40°.
应选C.
点评:此题测验了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.
19.(2022孝感,第4题3分)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()
A.46°B.44°C.36°D.22°
考点:平行线的性质;垂线.
分析:根据两直线平行,内错角相等可得∠3=∠1,再根据直角三角形两锐角互余列式计算即可得解.
解答:解:∵l1∥l2,
∴∠3=∠1=44°,
∵l3⊥l4,
∴∠2=90°﹣∠3=90°﹣44°=46°.
应选A.
点评:此题测验了平行线的性质,垂线的定义,熟记性质并切实识图是解题的关键.
20.(2022滨州,第3题3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()
A.同位角相等,两直线平行B.内错角相等,两直线平行
C.两直线平行,同位角相等D.两直线平行,内错角相等
考点:作图—根本作图;平行线的判定
分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.
解答:解:∵∠DPF=∠BAF,
∴AB∥PD(同位角相等,两直线平行).
应选:A.
点评:此题主要测验了根本作图与平行线的判定,正确理解题目的含义是解决此题的关键.
21.(2022海南,第7题3分)如图,已知AB∥CD,与∠1是同位角的角是()
A.∠2B.∠3C.∠4D.∠5考点:同位角、内错角、同旁内角.
分析:根据同位角的定义得出结论.
解答:解:∠1与∠5是同位角.
应选:D.
点评:此题主要测验了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.
22.(2022黔南州,第6题4分)以下图形中,∠2大于∠1的是()
A.]B.C.D.
考点:平行四边形的性质;对顶角、邻补角;平行线的性质;三角形的外角性质.
分析:根据平行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质即可作出判断.
解答:解:A、∠1=∠2,应选项错误;
B、根据三角形的外角的性质可得∠2>∠1,选项正确;
C、根据平行四边形的对角相等,得:∠1=∠2,应选项错误;
D、根据对顶角相等,那么∠1=∠2,应选项错误;
应选B.
点评:此题测验了行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质,正确掌管性质定理是关键.
23.(2022年贵州安顺,第5题3分)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,那么∠QPB的度数是()
A.60°B.80°C.100°D.120°
考点:平行线的性质..
专题:几何图形问题.
分析:根据两直线平行,同位角相等、同旁内角互补以及平角的定义可计算即可.
解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;
∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),
∴∠PQR=180°﹣2∠AQR=100°,
∴∠QPB=180°﹣100°=80°.
应选B.
点评:此题结合反射现象,测验了平行线的性质和平角的定义,是一道好题.
24.(2022山西,第2题3分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,那么∠2等于()
A.65°B.70°C.75°D.80°
考点:平行线的性质.
分析:根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.
解答:解:如图,∵AB∥CD,∠1=110°,
∴∠1+∠3=180°,即100+∠3=180°,
∴∠3=70°,
∴∠2=∠3=70°.
应选:B.
点评:此题测验了平行线的性质.
总结:平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等.简朴说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简朴说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等.简朴说成:两直线平行,内错角相等.
25.(2022丽水,第4题3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,那么∠2的度数是()
A.50°B.45°C.35°D.30°
考点:平行线的性质;直角三角形的性质.
分析:根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.
解答:解:如图,
∵直线a∥b,
∴∠3=∠1=60°.
∵AC⊥AB,
∴∠3+∠2=90°,
∴∠2=90°﹣∠3=90°﹣60°=30°,
应选:D.
点评:此题测验了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.
26.(2022湖北荆门,第3题3分)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,那么∠FAG的度数是()
第1题图
A.155°B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆赠与合同(附义务赠与)
- LED显示屏广告投放合同
- 保险箱买卖合同
- 房屋租赁协议变更
- 合伙投资协议书(经典范本)
- 广告公司网络安装工程承包合同
- 广西壮族自治区玉林市2024年七年级上学期期中数学试卷【附答案】
- 中考物理复习专项实验题组5课件
- 工程项目索赔管理
- 集成产品开发IPD培训
- 胸中天地宽 常有渡人船 -主题班会课件
- 老年衰弱护理课件
- 谈心谈话表(普通干部)
- 沥青路面的设计-沥青路面验收弯沉值计算
- Unit6Craftsmanship+Listening+an课件-中职高教版(2021)基础模块2
- 港口码头租赁协议书
- “问题链”教学模式在高中物理课堂中的实践研究
- 压力容器周检查表
- 班委会议记录表
- 数字孪生故障诊断与预测
- 菌毒种管理流程图
评论
0/150
提交评论