2023届福建省龙岩八中学中考数学模拟精编试卷含解析_第1页
2023届福建省龙岩八中学中考数学模拟精编试卷含解析_第2页
2023届福建省龙岩八中学中考数学模拟精编试卷含解析_第3页
2023届福建省龙岩八中学中考数学模拟精编试卷含解析_第4页
2023届福建省龙岩八中学中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.AEEC=BEED B.AE2.已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.3.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30° B.60° C.90° D.45°4.下列运算,结果正确的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+45.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.6.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A. B. C. D.7.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤9.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()A. B. C. D.10.下列图形中,阴影部分面积最大的是A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn=60°,菱形An﹣1BnAnCn的周长为.12.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.13.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则AE=_______.14.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.15.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.16.分式方程=1的解为_________.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)18.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1各项报名人数扇形统计图:图2各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.19.(8分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.20.(8分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.21.(8分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.22.(10分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.(1)求证:是的切线;(2)当,时,求的半径.23.(12分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.24.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故选项故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】

根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本选项错误;B.

∵b<a<0,∴ab>0,故本选项错误;C.

∵b<a<0,∴a>b,故本选项正确;D.

∵b<a<0,∴b−a<0,故本选项错误.故选C.3、B【解析】【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.【详解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所对的圆周角是圆心角的一半),故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、B【解析】

直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A.m2+m2=2m2,故此选项错误;B.2m2n÷mn=4m,正确;C.(3mn2)2=9m2n4,故此选项错误;D.(m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.5、D【解析】

当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.6、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.7、B【解析】

无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.8、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.9、D【解析】

先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.10、C【解析】

分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.B、根据反比例函数系数k的几何意义,阴影部分面积和为:.C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.综上所述,阴影部分面积最大的是C.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、4n【解析】试题解析:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n.考点:二次函数综合题.12、2+【解析】

试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圆心是(2,a),∴a=PD+DC=2+.【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.13、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.设BD=,则AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合题意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.14、60°.【解析】

先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.15、【解析】

根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】一副扑克牌共有54张,其中只有4张K,∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=6≠0,所以分式方程的解为x=1,故答案为:x=1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题(共8题,共72分)17、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18、(1)200;(2)54°;(3)见解析;(4)【解析】

(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360°即可得出答案;(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.【详解】解:(1)学生报名总人数为(人),故答案为:200;(2)项目所在扇形的圆心角等于,故答案为:54°;(3)项目的人数为,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.恰好选中甲、乙两名同学的概率为.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.19、(1)①45°,②;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明见解析.【解析】

(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,延长AB和CH交于点F,取BF的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.20、(1);(2)见解析;(3)【解析】

(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【详解】(1)如图1,过点C作CE∥OA交BD于点E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.21、(1)300,10;(2)有800人;(3).【解析】试题分析:试题解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.22、(1)见解析;(2)的半径是.【解析】

(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结.∵平分,∴,又,∴,∴,∵是边上的高线,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论