版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE12学必求其心得,业必贵于专精PAGE2.1.1简单随机抽样学习目标1。体会随机抽样的必要性和重要性;2。理解随机抽样的目的和基本要求;3。掌握简单随机抽样中的抽签法、随机数表法的一般步骤.知识点一随机抽样的必要性及基本概念思考要知道一批牛奶是否达标,为什么不采用逐一检测的方法?梳理(1)抽样的必要性:第一,要考查的总体中个体数往往________,而且在时刻变化,逐一调查不可能.第二,考查往往具有__________,所以逐一调查也不可取.这就需要抽查一部分,以此来估计________.(2)抽样涉及的基本概念:(以某地区高一学生身高为例)为了了解某地区高一学生身高的情况,我们找到了该地区高一八千名学生的体检表,从中随机抽取了150张,表中有体重、身高、血压、肺活量等15类数据,那么总体是指____________,个体是指______________,样本是指_________________,样本容量是________.知识点二简单随机抽样思考从含有甲、乙的9件产品中随机抽取一件,总体内的各个个体被抽到的机会相同吗?为什么?甲被抽到的机会是多少?梳理简单随机抽样:一般地,从个体数为N的总体中逐个__________地取出n个个体作为样本(n<N),如果每个个体都有________的机会被取到,那么这样的抽样方法称为__________.简单随机抽样方法分为eq\b\lc\{\rc\(\a\vs4\al\co1(抽签法,,随机数表法.))简单随机抽样有操作____________的优点,在总体____________的情况下是行之有效的.类型一简单随机抽样的基本思想例1人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方式是不是简单随机抽样?为什么?反思与感悟判断一个抽样方式是不是简单随机抽样,就是看这个抽样符不符合简单随机抽样的4个特点,符合就是,否则就不是.跟踪训练1下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.类型二抽签法例2某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.反思与感悟一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练2从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.类型三随机数表法例3假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,应如何操作?反思与感悟抽签法和随机数表法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号、产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100。随机数表法对个体的编号要看总体的个数,总体数为100,通常为00,01,…,99.总体数大于100小于1000,从000开始编起,然后是001,002,…。跟踪训练3要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始并向右读,请依次写出最先检验的4颗种子的编号________.(下面抽取了随机数表第1行至第8行)03474373863696473661469863716233261680456011141095977424676242811457204253323732270736075124517989731676622766565026710732907978531355385859889754141012568599269696682731050372931557121014218826498176555956356438548246223162430990061844325323830130301622779439495443548217379323788735209643842634916484421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238791.某次考试有10000名学生参加,为了了解这10000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下三种说法:①1000名考生是总体的一个样本;②10000名考生是总体;③样本容量是1000。其中正确的说法有________种.2.关于简单的随机抽样,有下列说法:①它要求被抽样本的总体的个数有限,以便对其中各个个体被抽取的可能性进行分析;②它是从总体中逐个地进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的命题有________个.3.下列抽样方法是简单随机抽样的是________.①从50个零件中一次性抽取5个进行质量检验;②从50个零件中有放回地抽取8个进行质量检验;③从实数集中逐个抽取10个正整数分析奇偶性;④运动员从8个跑道中随机抽取1个跑道.4.从100件电子产品中抽取一个容量为25的样本进行检测,试用随机数表法抽取样本.1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数表法.2.抽签法的优点是简单易行,缺点是当总体的容量较大时,费时、费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数表法的优点也是简单易行,缺点是当总体容量较大时,编号不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为n/N,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.
答案精析问题导学知识点一思考因为检测具有破坏性,且耗时费力.梳理(1)很多破坏性总体(2)该地区高一八千名学生的身高该地区高一某个学生的身高被抽到的150名学生的身高150知识点二思考总体内的各个个体被抽到的机会是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机会都是1/9,甲也是1/9.梳理不放回相同简单随机抽样简便易行个数不多题型探究例1解不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始牌,其他各张牌虽然是逐张搬牌,但是各张在谁手里已被确定,所以不是简单随机抽样.跟踪训练1解(1)不是.因为总体的个体数不是有限的.(2)不是.因为抽取是有放回的抽取,不符合简单随机抽样的特点.例2解方案如下:第一步,将18名志愿者编号,号码为01,02,03,…,18。第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.跟踪训练2解第一步将20架钢琴编号,号码是01,02,…,20.第二步将号码分别写在相同的纸条上,揉成团,制成号签.第三步将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步与所得号码对应的5架钢琴就是要进行质量检查的对象.例3解第一步,将800袋牛奶编号为000,001,…,799.第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7).第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.跟踪训练3227,665,650,267解析从随机数表第3行第6列的数2开始向右读,第一个小于850的数字是227,第二个数字是665,第三个数字是650,第四个数字是267,符合题意.当堂训练1.1解析总体是10000名考生的数学成绩,样本是1000名考生的数学成绩,故①②都错,只有③正确.2.43.④解析①是一次性抽取;②是有放回抽取;③中的实数集中有无限个正整数,这些都不符合简单随机抽样的特征.4.解第一步
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度不锈钢管件加工与销售合同
- 蒸汽机锅炉市场需求与消费特点分析
- 电子游戏装置市场发展预测和趋势分析
- 2024年度城市公共交通设施建设钢材购销合同
- 2024年度建筑设计合同(项目要求与设计费用计算)
- 2024年度大型科学仪器共享平台建设合同
- 蓄电池搬运车市场发展预测和趋势分析
- 电子读卡器市场发展现状调查及供需格局分析预测报告
- 2024年度物业管理保洁服务增值合同
- 2024年度毛石需求预测与供应合同
- 化工生产开停车方案
- 县级医院创建人文关怀医院实施方案
- 高精度时间同步及定位技术应用白皮书
- 小学科学教育科学三年级上册空气《风的成因》教案
- DB13 2863-2018 炼焦化学工业大气污染物超低排放标准
- 火炬系统水封罐计算
- 中国旅游客源国和目的地概况教学课件作者
- 保定市县级地图PPT可编辑矢量行政区划(河北省)
- 智慧产业园区解决方案
- 怎样写好文学短评课件(15张PPT)
- 医院卒中中心建设方案
评论
0/150
提交评论