![大学物理刚体(老师课件)_第1页](http://file4.renrendoc.com/view/48c290b3757afc076f1c14ef5ddbb274/48c290b3757afc076f1c14ef5ddbb2741.gif)
![大学物理刚体(老师课件)_第2页](http://file4.renrendoc.com/view/48c290b3757afc076f1c14ef5ddbb274/48c290b3757afc076f1c14ef5ddbb2742.gif)
![大学物理刚体(老师课件)_第3页](http://file4.renrendoc.com/view/48c290b3757afc076f1c14ef5ddbb274/48c290b3757afc076f1c14ef5ddbb2743.gif)
![大学物理刚体(老师课件)_第4页](http://file4.renrendoc.com/view/48c290b3757afc076f1c14ef5ddbb274/48c290b3757afc076f1c14ef5ddbb2744.gif)
![大学物理刚体(老师课件)_第5页](http://file4.renrendoc.com/view/48c290b3757afc076f1c14ef5ddbb274/48c290b3757afc076f1c14ef5ddbb2745.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章刚体的转动
刚体
rigidbody
:在外力(无论多大)作用下,形状和大小都不发生变化的物体。1、刚体运动时,各质元之间的相对距离保持不变。2、刚体是一种理想模型。视作特殊质点组。一、刚体的平动刚体运动时,体内任意两点连线的方向始终保持不变。刚体的基本运动形式平动
translation
转动
rotation
平动的特点:1)刚体中各质点的运动情况相同2)刚体的平动可归结为质点运动
刚体平动质心运动实际:
对质心有“质心运动定理”5.1刚体运动的描述二、刚体的定轴转动
当刚体内所有点都绕同一直线作圆周运动,这种运动称为转动。
若转轴的位置和方向是固定不动的,此时刚体的转动称为定轴转动。特点:刚体内所有点具有相同的角位移、角速度和角加速度。--刚体上任一点作圆周运动的规律即代表了刚体定轴转动的规律。
刚体的一般运动质心的平动绕质心的转动+三、刚体定轴转动的描述1.各点都在自己的转动平面内作圆周运动描述的物理量刚体上某点的线量与角量的关系:对刚体不存在整体的线速度!
就是刚体转动的角位置、…、角加速度2.各点转动的半径不同线速度不同ωrv例:已知:求:解:1、在刚体定轴转动中,角速度和角加速度均沿轴向。其指向可用正负表示。说明3、角加速度的方向与角速度增量的方向一致,当与同号时,加速转动;与异号时,减速转动。方向:右手螺旋方向2、4、刚体定轴匀变速转动方程与同形一、转动定律刚体内任一质元i,其转动半径为ri
,所受合外力为Fi,—刚体对轴的转动惯量5.2刚体定轴转动的运动定律即:内力为fi
刚体定轴转动的转动定律该转动定律在刚体定轴转动问题中的地位相当于牛顿第二定律在质点运动中的地位应用转动定律解题步骤与用牛顿第二定律时相同。刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩作用下所获得的角加速度的乘积②刚体的重力矩等于刚体全部质量集中于质心时所产生的重力矩.重力矩大小:细杆质量m,长L①Notes:
方向与角加速度方向一致为正,相反为负.例:几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A)必然不会转动.(B)转速必然不变.(C)转速必然改变.(D)转速可能不变,也可能改变.答案:(D)若矢量和不为零,结果?[思考]二、转动惯量(momentofinertia)——反映刚体转动惯性大小的物理量。
1.定义:例:如图对于质量连续分布的刚体:质量线密度:质量面密度:质量体密度md1)总质量m越大,J越大;2)质量分布离轴越远,J越大;3)轴位置不同,J不同。2.决定刚体转动惯量的因素:Om,RRm,ROO3.平行轴定理(parallelaxistheorem)zLCMz'C点是刚体的质心M,L例:有两个半径相同、质量相等的细圆环A和B,A环的质量分布均匀,B环不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为JA和JB,则(A)JA>JB(B)JA<JB(C)JA=JB(D)不能确定答案:(C)若是两个圆盘呢?[思考]竿子长些还是短些较安全?
飞轮的质量为什么大都分布于外轮缘?思考【例】已知圆盘转动惯量J,初角速度0阻力矩M=-k(k为正的常量)求:角速度从0变为0/2所需的时间解:转动定律:【例】飞轮转动惯量J,初角速度0,阻力矩的大小与角速度的平方成正比,比例系数为k(k为正的常量)求:⑴当=0/3时,角加速度=?⑵从开始制动到=0/3时所转过的角度.解:⑴按题意M=-k2⑵转动定律:[思考]所经过的时间?解:以m1
、m2和弹簧、地球为研究系统,施加压力F时,弹簧被压缩x0,由平衡条件得撤F后,m2离开地面的条件为:系统机械能守恒例习4.3用弹簧连接两个木板m1、m2
,弹簧压缩。求:给m1上加多大的压力能使m2
离开桌面?
三.转动定律的应用解题要点3)滑轮转动的角加速度例5.1已知:定滑轮解:受力图轻绳不伸长无相对滑动求:1)物体加速度a2)绳子的张力T>设得解。T1≠T2
若
M=0,则T1=T2讨论:无相对滑动例5.2固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO转动,设大小圆柱体的半径分别为R和r,质量分别为M和m,绕在两柱体上的细绳分别与物体m1和物体m2相连,m1和m2分别挂在圆柱体的两侧。求:OOm2m1MmrR1)柱体转动时的角加速度;2)两侧细绳的张力。rRO解:解得m1,m2的平动方程和柱体转动方程为T2T1T2T1m2gm1ga2a1讨论:(1)若只求柱体转动的角加速度,可将柱体和m1,m2选作一个系统,系统受的合外力矩M=m1gRm2gr,则根据转动定律可得角加速度为(2)若考虑绳与圆柱体的总摩擦力矩为Mμ,
则以式(5)取代式(3),再求解即可。一、角动量定理质点的角动量定理(对轴):刚体:因各质元对轴的角动量方向相同,所以合矢量的大小就是分矢量大小的直接相加,则其中角动量定理5.3刚体定轴转动的角动量刚体定轴转动的角动量定理(质点系)二、角动量守恒定律◆
M外和L
须是对惯性系中的同一点或同一轴。角动量守恒定律刚体对定轴的角动量或写为对比质点对定点的动量微分形式积分形式mmω许多现象都可以用角动量守恒来说明花样滑冰跳水茹可夫斯基凳圆锥摆子弹击入杆以子弹和杆为系统机械能不守恒.角动量守恒;动量不守恒?;以子弹和沙袋为系统动量守恒;角动量守恒;机械能不守恒.圆锥摆系统动量不守恒;角动量守恒;机械能守恒.关于系统守恒的讨论子弹击入沙袋细绳质量不计非弹性碰撞例5.3一杂技演员M由距水平跷板高为h处自由下落到跷板的一端A,并把跷板另一端的演员N弹了起来。设跷板是匀质的,长度为l,质量为
,跷板可绕中部支撑点C在竖直平面内转动,演员的质量均为m。假定演员M落在跷板上与跷板的碰撞是完全非弹性碰撞。问演员N可弹起多高?ll/2CABMNh解碰撞前M落在A点的速度
碰撞后的瞬间,M、N具有相同的线速度
把M、N和跷板作为一个系统,解得演员N以u起跳,达到的高度ll/2CABMNhm'gmgNmg角动量守恒一、动能定理5.4刚体定轴转动中的能量关系力矩的功:用角量表示力作的功O.oF┴(垂直于转轴的截面)2.刚体定轴转动的动能3.刚体定轴转动的动能定理二、重力场中刚体的机械能系统--刚体+地球:刚体的质心相对势能零点的高度转动定律:合外力矩的功刚体转动动能的增量转动动能定理:解:过程1:质点与细棒相碰撞
碰撞过程中系统对O点的合力矩为零例5.4质点与质量均匀的细棒相撞(如图)设是完全非弹性碰撞求:棒摆起的最大角度∴系统对O点的角动量守恒,得细棒势能质点势能过程2:质点、细棒上摆二者+地球的
系统中只有保守内力(重力)作功,所以机械能守恒。两式联立得解
以上摆前为势能零点例5.5匀质细棒长l,质量m,可绕通过其端点O的水平轴转动,如图所示。当棒从水平位置自由释放后,在竖直位置与放在地面上、质量也为m的物体相撞(物体与地面的摩擦系数为)。撞后,物体沿地面滑行距离s而停止。求相撞后棒的质心离地面的最大高度h。CO解1.棒摆落过程棒+地球
外力轴处支承力不做功机械能守恒(1)
以竖直时质心位置处为势能零点3.撞后物体滑行过程匀减速直线运动(3)(4)(5)′为正值表示碰后棒向左摆;反之向右摆。2.碰撞过程棒+物体
轴处支承力、重力无力矩角动量守恒(2)棒质心C上升机械能守恒解得:
例5.6如图所示,滑轮转动惯量为0.01kg·m2,半径为7cm,物体质量为5kg,由一绳与倔强系数k=200N/m的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直,弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达到最大值的位置及最大速率。解:(1)分析知,机械能守恒,
设物体下落最大距离为h,开始时物体所在位置为重力势能零点,则:质量角动量动量定理角动量定理动量守恒质点运动与刚体定轴转动对照表质点运动刚体定轴转动转动惯量力力矩第二定律转动定律动量角动量守恒力的功力矩的功动能转动动能动能定理转动动能定理习5.1工程上常用摩擦啮合器使两飞轮以相同的转速一起转动。如图所示,A和B两飞轮的轴杆在同一中心线上,A轮的转动惯量为JA=10kgm2,B轮的转动惯量为JB=20kgm2
。开始时A轮的转速为600r/min,B轮静止。C为摩擦啮合器。求两轮啮合后的转速;在啮合过程中,两轮的机械能有何变化?AACBACB式中为两轮啮合后共同转动的角速度,于是解:以飞轮A、B和啮合器C作为一系统来考虑,在啮合过程中,系统受到轴向的正压力和啮合器间的切向摩擦力,前者对转轴的力矩为零,后者对转轴有力矩,但为系统的内力矩。系统没有受到其他外力矩,所以系统的角动量守恒。按角动量守恒定律可得或共同转速为在啮合过程中,摩擦力矩作功,所以机械能不守恒,部分机械能将转化为热量,损失的机械能为以各量的数值代入得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023八年级数学上册 第2章 三角形2.5 全等三角形第5课时 SSS说课稿 (新版)湘教版
- 2024年九年级语文上册 第五单元 第17课《草房子》说课稿 鄂教版
- 25《慢性子裁缝和急性子顾客》(说课稿)-2023-2024学年统编版语文三年级下册
- 2024-2025学年高中物理 第一章 电磁感应 4 楞次定律说课稿 教科版选修3-2
- 2025深圳市途安汽车租赁有限公司租赁合同
- 2025地区代理合同样式详细版
- 2024年四年级英语下册 Unit 5 What will you do this weekend Lesson 27说课稿 人教精通版(三起)
- 2023八年级生物下册 第七单元 生物圈中生命的延续和发展第一章 生物的生殖和发育第2节 昆虫的生殖和发育说课稿 (新版)新人教版
- 个人消防安装合同范例
- 俄罗斯电梯采购合同范例
- 胎儿性别鉴定报告模板
- 大学生就业指导PPT(第2版)全套完整教学课件
- 家具安装工培训教案优质资料
- 湖南大一型抽水蓄能电站施工及质量创优汇报
- 耳穴疗法治疗失眠
- 少儿财商教育少儿篇
- GB 1886.114-2015食品安全国家标准食品添加剂紫胶(又名虫胶)
- 初二上册期末数学试卷含答案
- envi二次开发素材包-idl培训
- 2022年上海市初中语文课程终结性评价指南
- 西门子starter软件简易使用手册
评论
0/150
提交评论