安徽名校2022年高三第二次调研数学试卷含解析_第1页
安徽名校2022年高三第二次调研数学试卷含解析_第2页
安徽名校2022年高三第二次调研数学试卷含解析_第3页
安徽名校2022年高三第二次调研数学试卷含解析_第4页
安徽名校2022年高三第二次调研数学试卷含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,集合,则=()A. B.C. D.2.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.3.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.44.已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为()A. B. C. D.5.设复数,则=()A.1 B. C. D.6.是虚数单位,则()A.1 B.2 C. D.7.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.48.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.49.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立10.已知命题,那么为()A. B.C. D.11.已知向量满足,且与的夹角为,则()A. B. C. D.12.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________.14.已知x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,则15.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.16.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.18.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.19.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.20.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.22.(10分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.2.B【解析】

奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.3.C【解析】

将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.4.C【解析】

对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,,显然当时有,,∴经单调性分析知为的第一个极值点又∵时,∴,,,…,均为其极值点∵函数不能在端点处取得极值∴,,∴对应极值,,∴故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题5.A【解析】

根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.6.C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.7.B【解析】

设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.8.C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.D【解析】

取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.10.B【解析】

利用特称命题的否定分析解答得解.【详解】已知命题,,那么是.故选:.【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.11.A【解析】

根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.12.C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【详解】,得,在等式两边平方得,解得.故答案为:.【点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.3【解析】

先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,画出可行域如图所示.目标函数z=2x-y,即平移直线y=2x-z,截距最大时即为所求.2y+1=0x-y-1=0点A(12,z在点A处有最小值:z=2×1故答案为:32【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.15.【解析】

由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.【详解】设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图则,所以,,解得,所以,,,由,得,解得.故答案为:【点睛】本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.16.9【解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)2,;(2)证明见解析.【解析】

(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.【详解】(1)解:由题意得的方程为,所以,解得.又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.所以圆的方程为.(2)证明:易知直线的斜率存在且不为0,设,的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点N的坐标为,所以,,故.【点睛】本题主要考查抛物线的定义几何性质以及直线与抛物线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.18.(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即直线与平面所成角的正弦值为.19.(Ⅰ)见解析.(Ⅱ).【解析】

(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案.【详解】(I)证明:分别为的中点,,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面是平面的一个法向量平面与平面所成角的正弦值为【点睛】本题考查了面面垂直的判定,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题.20.(1)见证明;(2)【解析】

(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.【详解】(1)证明:在等腰梯形,,易得在中,,则有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,设,,,,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,设平面的法向量为,由得,取,得,,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论