版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年阿勒泰职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得
a=12.综上,a的值为12或32故选C.2.若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得到的曲线的方程是()
A.
B.
C.
D.答案:C3.直线4x-3y+5=0与直线8x-6y+5=0的距离为______.答案:直线4x-3y+5=0即8x-6y+10=0,由两平行线间的距离公式得:直线4x-3y+5=0(8x-6y+10=0)与直线8x-6y+5=0的距离是
|10-5|62+82=12,故为:12.4.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、525.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:3126.已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:
(1)AE与平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D为坐标原点建立空间直角坐标系,如图所示:(1)设正方体棱长为2.则E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量为n=(0,1,0).设AE与平面BCC1B1所成的角为θ.sinθ=|cos<AE,n>|=|AE•n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).设平面DBC1的法向量为n1=(x,y,z),则n1•DB=x+y=0n1•DC1=y+z=0,令y=-1,则x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量为n2=(0,0,1).设二面角C1-DB-A的大小为α,从图中可知:α为钝角.∵cos<n1,n2>=n1•n2|n1|
|n2|=13=33,∴cosα=-33.7.若关于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,则实数a的取值范围是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D8.已知点A(1,0,0),B(0,2,0),C(0,0,3)则平面ABC与平面xOy所成锐二面角的余弦值为______.答案:AB=(-1,2,0),AC=(-1,0,3).设平面ABC的法向量为n=(x,y,z),则n•AB=-x+2y=0n•AC=-x+3z=0,令x=2,则y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).则cos<m,n>=m•n|m|
|n|=231×22+1+(23)2=27.故为27.9.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.10.如图,有两条相交成π3角的直线EF,MN,交点是O.一开始,甲在OE上距O点2km的A处;乙在OM距O点1km的B处.现在他们同时以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.设与OE同向的单位向量为e1,与OM同向的单位向量为e2.
(1)求e1,e2;
(2)若过2小时后,甲到达C点,乙到达D点,请用e1,e2表示CD;
(3)若过t小时后,甲到达G点,乙到达H点,请用e1,e2表示GH;
(4)什么时间两人间距最短?答案:(1)由题意可得e1=12OA,e2=OB,(2)若过2小时后,甲到达C点,乙到达D点,则OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:经过t小时后,甲到达G点,乙到达H点,则OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故两人间距离y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函数的知识可知,当t=--62×12=14时,上式取到最小值32,故14时两人间距离最短.11.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..12.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.13.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形14.如图:已知圆上的弧
AC=
BD,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)15.已知||=3,A、B分别在x轴和y轴上运动,O为原点,则动点P的轨迹方程是()
A.
B.
C.
D.答案:B16.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.17.在语句PRINT
3,3+2的结果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B18.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.19.在下面的图示中,结构图是()
A.
B.
C.
D.
答案:B20.等于()
A.a16
B.a8
C.a4
D.a2答案:C21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为
______.答案:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:|OF||OA|=|FC||AB|?ca=62=3.故为322.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.23.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:824.已知△A′B′C′是水平放置的边长为a的正三角形△ABC的斜二测平面直观图,那么△A′B′C′的面积为______.答案:正三角形ABC的边长为a,故面积为34a2,而原图和直观图面积之间的关系S直观图S原图=24,故直观图△A′B′C′的面积为6a216故为:6a216.25.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°26.若直线按向量平移得到直线,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有无数个答案:D解析:设平移向量,直线平移之后的解析式为,即,所以,满足的有无数多个.27.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论28.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()
A.432
B.288
C.216
D.108答案:C29.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.30.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的办法分成50个部分.如果第一部分编号为0001,0002,…,0020,从中随机抽取一个号码为0015,则第40个号码为______.答案:∵系统抽样是先将总体按样本容量分成k=Nn段,再间隔k取一个.又∵现在总体的个体数为1000,样本容量为50,∴k=20∴若第一个号码为0015,则第40个号码为0015+20×39=0795故为079531.已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立答案:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D32.若两直线l1,l2的倾斜角分别为α1,α2,则下列四个命题中正确的是()
A.若α1<α2,则两直线斜率k1<k2
B.若α1=α2,则两直线斜率k1=k2
C.若两直线斜率k1<k2,则α1<α2
D.若两直线斜率k1=k2,则α1=α2答案:D33.分析如图的程序:若输入38,运行右边的程序后,得到的结果是
______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10
为去十位数b=xMOD10
去余数,即取个位数x=10*b+a
重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:8334.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.35.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D36.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D37.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()
A.105°
B.115°
C.120°
D.125°
答案:B38.在极坐标系中,直线l经过圆ρ=cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=cosθ可知此圆的圆心为(12,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=12,所以直线l与极轴的交点的极坐标为(12,0).故为:(12,0).39.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C40.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.41.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),则a•(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a•(b+c)=(2,-3,1)•(2,2,5)=4-6+5=3.故为:3.42.圆锥曲线x=4secθ+1y=3tanθ的焦点坐标是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函数的运算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作双曲线x216-y29=1向右平移1个单位得到,而双曲线x216-y29=1的焦点为(-5,0),(5,0)故所求双曲线的焦点为(-4,0),(6,0)故为:(-4,0),(6,0)43.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.44.为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85]之间为良好;在[65,75]之间为合格;在(0,60)之间,体能素质为不合格.
现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;
(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示);
(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.答案:(1)由已知的数据可得频率分布表和频率分布直方图如下:
分组
频数
频率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[80,85)
10
1030[85,90)
6
630[90,95)
3
330[95,100)
1
130根据抽样,估计该校高一学生中体能素质为优秀的有1030×900=300人
…(5分)(2)ξ的可能取值为0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987
…(8分)∴ξ分布列为:ξ012P38874087987…(9分)所以,数学期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根据抽样,估计该校高一学生中体能素质为优秀有1030×900=300人,占总人数的13,体能素质为良好的有1430×900=420人,占总人数的715,体能素质为优秀或良好的共有2430×900=720人,占总人数的45,但体能素质为不合格或仅为合格的共有630×900=180人,占总人数的15,说明该校高一学生体能素质良好,但仍有待进一步提高,还需积极参加体育锻炼.45.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故为M=P.46.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.47.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C48.已知向量与的夹角为120°,若向量,且,则=()
A.2
B.
C.
D.答案:C49.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}50.已知f(10x)=x,则f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故为:lg5第2卷一.综合题(共50题)1.将程序补充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶数”
ELSE
PRINT“x是奇数”
END
IF
END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=02.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q的轨迹方程.答案:(I)∵椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴椭圆的离心率e=ca=12=22…4分(II)由(I)知,椭圆C的方程为x22+y2=1,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-355)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①将y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化简得x2=1810k2-3…③因为点Q在直线y=kx+2上,所以k=y-2x,代入③中并化简得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,则y∈(12,2-355)所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分3.下表表示y是x的函数,则函数的值域是
______.
答案:有图表可知,所有的函数值构成的集合为{2,3,4,5},故函数的值域为{2,3,4,5}.4.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A5.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.8答案:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.6.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D7.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.8.设O是平行四边形ABCD的两条对角线AC与BD的交点,对于下列向量组:①AD与AB;②DA与BC;③CA与DC;④OD与OB.其中能作为一组基底的是______(只填写序号).答案:解析:由于①AD与AB不共线,③CA与DC不共线,所以都可以作为基底.②DA与BC共线,④OD与OB共线,不能作为基底.故为:①③.9.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()
A.2个
B.3个
C.6个
D.9个
答案:D10.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.11.下列哪组中的两个函数是同一函数()A.y=(x)2与y=xB.y=(3x)3与y=xC.y=x2与y=(x)2D.y=3x3与y=x2x答案:A、y=x与y=x2的定义域不同,故不是同一函数.B、y=(3x)3=x与y=x的对应关系相同,定义域为R,故是同一函数.C、fy=x2与y=(x)2的定义域不同,故不是同一函数.D、y=3x3与y=x2x
具的定义域不同,故不是同一函数.故选B.12.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.13.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B14.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.15.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为416.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.17.电视机的使用寿命显像管开关的次数有关.某品牌电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是______.答案:记“开关了10000次还能继续使用”为事件A,记“开关了15000次后还能继续使用”为事件B,根据题意,易得P(A)=0.96,P(B)=0.80,则P(A∩B)=0.80,由条件概率的计算方法,可得P=P(A∩B)P(A)=0.800.96=56;故为56.18.下列图象中不能作为函数图象的是()A.
B.
C.
D.
答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.19.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,
(1)设直线l的倾斜角为α,写出直线l的参数方程;
(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p220.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125故为:17+18+19+20+21+22+23+24+25=64+12521.已知,求证:.答案:证明略解析:因为是轮换对称不等式,可考虑由局部证整体.,相加整理得.当且仅当时等号成立.【名师指引】综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形.22.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).23.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(
)。答案:(-4,-2)24.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).25.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立26.如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是
______.答案:连接OD,AB⊥CD于E,根据垂径定理得到DE=4,在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,易证△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.27.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.28.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学和进行作业检查,这种抽样方法是()
A.随机抽样
B.分层抽样
C.系统抽样
D.以上都是答案:C29.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B30.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,设(α,β∈R),则α+β的最大值等于
()
A.
B.
C.
D.1
答案:B31.直线y=x-1的倾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A32.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()
A.10种
B.25种
C.52种
D.24种答案:D33.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.34.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).35.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.36.若点P(-1,3)在圆x2+y2=m2上,则实数m=______.答案:∵点P(-1,3)在圆x2+y2=m2上,∴点P坐标代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故为:±237.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A38.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.39.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13540.已知x与y之间的一组数据是()
x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.41.对赋值语句的描述正确的是(
)
①可以给变量提供初值
②将表达式的值赋给变量
③可以给一个变量重复赋值
④不能给同一变量重复赋值A.①②③B.①②C.②③④D.①②④答案:A解析:试题分析:在表述一个算法时,经常要引入变量,并赋给该变量一个值。用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句。赋值语句的一般格式是:变量名=表达式其中“=”为赋值号.故选A。点评:简单题,赋值语句的一般格式是:变量名=表达式其中"="为赋值号。42.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B43.若集合A={x|3≤x<7},B={x|2<x<10},则A∪B=______.答案:因为集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故为:{x|2<x<10}.44.设,则之间的大小关系是
.答案:b>a>c解析:略45.已知0<α<π2,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围______.答案:方程x2sinα+y2cosα=1化成标准形式得:x21sinα+y21cosα=1.∵方程表示焦点在y轴上的椭圆,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范围是(π4,π2)故为:(π4,π2)46.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.47.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为448.函数y=x2x4+9(x≠0)的最大值为______,此时x的值为______.答案:y=x2x4+9=1x2+9x2≤129=16,当且仅当x2=9x2,即x=±3时取等号.故为:16,
±349.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.50.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的()A.原命题B.逆命题C.否命题D.逆否命题答案:设命题p为“若k,则s”;则其否命题q是“若¬k,则¬s”;∴命题q的逆命题r是“若¬s,则¬k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题.故选C.第3卷一.综合题(共50题)1.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:42.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.3.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.4.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.5.高二年级某班有男生36人,女生28人,从中任选一位同学为数学科代表,则不同选法的种数是()A.36B.28C.64D.1008答案:高二年级某班有男生36人,女生28人,即共有64人,从中任选一位同学为数学科代表,则不同选法的种数64,故选C.6.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x7.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110B.120C.140D.1120答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33?A66?A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:P=A33?A66?A27A1010=120.故选B.8.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B9.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为3的一条线段,满足条件的事件是组成钝角三角形,包括两种情况第一种∠ADB为钝角,这种情况的分界是∠ADB=90°的时候,此时BD=1∴这种情况下,满足要求的0<BD<1.第二种∠OAD为钝角,这种情况的分界是∠BAD=90°的时候,此时BD=4∴这种情况下,不可能综合两种情况,若△ABD为钝角三角形,则0<BD<1P=13故选B10.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.11.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()
A.
B.
C.
D.答案:D12.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.13.等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为
______.答案:等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,所以梯形的高为:1,按平行于上、下底边取x轴,则直观图A′B′C′D′的高为:12sin45°=24所以直观图的面积为:12×(1+3)×24=22故为:2214.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C15.抛物线y=3x2的焦点坐标是______.答案:化为标准方程为x2=13y,∴2p=13,∴p2=
112,∴焦点坐标是(0,112).故为(0,112)16.函数f(x)=8xx2+2(x>0)()A.当x=2时,取得最小值83B.当x=2时,取得最大值83C.当x=2时,取得最小值22D.当x=2时,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22当且仅当x=2x即x=2时,取得最大值22故选D.17.关于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B18.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.19.若A=1324,B=-123-3,则3A-B=______.答案:∵A=1324,B=-123-3,则3A-B=31324--123-3=39612--123-3=47315.故为:47315.20.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()
A.
B.
C.
D.答案:C21.若施化肥量x与小麦产量y之间的回归方程为y=250+4x(单位:kg),当施化肥量为50kg时,预计小麦产量为______kg.答案:根据回归方程为y=250+4x,当施化肥量为50kg,即x=50kg时,y=250+4x=250+200=450kg故为:45022.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B23.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:
成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.24.已知θ是三角形内角且sinθ+cosθ=,则表示答案:C25.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.26.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).27.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B28.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1429.已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)过点P(0,-2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,
(ⅰ)求点M的轨迹C2的方程;
(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在时,试判断kPQkAQ+kPQkBQ是否为常数?若是,求出这个常数;若不是,请说明理由.答案:(Ⅰ)由题意得p+p2=3,则p=2,…(3分)所以抛物线C1的方程为x2=4y.
…(5分)(Ⅱ)(ⅰ)设过点P(0,-2)的直线方程为y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)抛物线C1在点A,B处的切线方程分别为y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以点M的轨迹C2的方程为y=2
(x<-22或x>22).…(10分)(ⅱ)设Q(m,2)(|m|>22),则kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)•4k+8m8k2-4k•4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ为常数2.
…(15分)30.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.31.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.32.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______
答案:(1)游戏盘的中奖概率为
38,(2)游戏盘的中奖概率为
14,(3)游戏盘的中奖概率为
26=13,(4)游戏盘的中奖概率为
13,(1)游戏盘的中奖概率最大.故为:(1).33.设xi,yi
(i=1,2,…,n)是实数,且x1≥x2≥…≥xn,y1≥y2≥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育场馆大白施工合同
- 专利代理人聘用合同律师
- 航空航天企业研发经理聘用合同
- 实验室施工合同模板
- 水利工程监理服务协议
- 餐饮业财务人员招聘协议
- 海口二手房急售合同模板
- 外语翻译专家聘用协议
- 中医学说教师聘用合同
- 大型工厂给排水系统施工合同
- 2024年人教版小学四年级英语(上册)期末试卷附答案
- 第9课《创新增才干》第2框《积极投身创新实践》【中职专用】中职思想政治《哲学与人生》(高教版2023基础模块)
- 食品经营安全管理制度目录
- DB4406-T 23-2023 地理标志产品 伦教糕
- 2024-2030年中国工业远程终端装置(RTU)行业市场发展趋势与前景展望战略分析报告
- 耕作学智慧树知到期末考试答案章节答案2024年中国农业大学
- 餐厅实习协议书
- QCT1067.5-2023汽车电线束和电器设备用连接器第5部分:设备连接器(插座)的型式和尺寸
- 2024质量管理理解、评价和改进组织的质量文化指南
- 2024年度领导干部任前廉政法规知识测试题库150题
- 2024年四川省凉山州中考适应性考试语文试题(含答案解析)
评论
0/150
提交评论