版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年黄冈科技职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C2.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.3.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如图,则a、b、c、d、1之间从小到大的顺序是______.答案:作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<1<d<c故为:b,a,1,d,c4.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.5.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0
B=φA(2)当a=-1时△=0
B={0}A(3)当a>-1时△>0
要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=16.方程(x2-9)2(x2-y2)2=0表示的图形是()
A.4个点
B.2个点
C.1个点
D.四条直线答案:D7.曲线x=sinθy=sin2θ(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是______.答案:曲线
x=sinθy=sin2θ
(θ为参数),为抛物线段y=x2(-1≤x≤1),借助图形直观易得0<a≤1.8.经过点P(4,-2)的抛物线的标准方程为()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C9.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B10.(理)在直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为______.答案:∵直角坐标系中,圆C的参数方程是x=2cosθy=2+2sinθ(θ为参数),∴x2+(y-2)2=4,∵以原点为极点,以x轴正半轴为极轴建立极坐标系,∴圆心坐标(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圆C的圆心极坐标为(2,π2),故为:(2,π2).11.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.12.不等式﹣2x+1>0的解集是(
).答案:{x|x<}13.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C14.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A15.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()
A.a、b至少有一个不为0
B.a、b至少有一个为0
C.a、b全不为0
D.a、b中只有一个为0答案:A16.如图所示,设k1,k2,k3分别是直线l1,l2,l3的斜率,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C17.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B18.如图是集合的知识结构图,如果要加入“全集”,则应该放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位答案:D19.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.20.用反证法证明“如果a<b,那么“”,假设的内容应是()
A.
B.
C.且
D.或
答案:D21.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.22.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:323.如图,梯形ABCD内接于⊙O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故为:60°24.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.25.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()
A.+=
B.与方向相同
C.⊥
D.∥答案:D26.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.27.在参数方程所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是()
A.
B.
C.
D.答案:B28.若矩阵M=1101,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x,y)是所得的直线上一点,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直线x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故为:x+2y+2=0.29.如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为______.答案:连BD,则∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故为:130.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是______.答案:依题意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故为:h1?cotθ1+h2?cotθ2≤2a31.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.32.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.33.已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于______.答案:因为假设n=k时,f(2k)=1+12+13+…+12k,当n=k+1时,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故为:12k+1+12k+2+…+12k+134.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:
是否继续循环
A
N循环前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以这个打印的第五个数是31.故为:3135.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.36.设随机变量x~B(n,p),若Ex=2.4,Dx=1.44则()
A.n=4,p=0.6
B.n=6,p=0.4
C.n=8,p=0.3
D.n=24,p=0.1答案:B37.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B38.在△ABC中,=,=,且=2,则等于()
A.+
B.+
C.+
D.+答案:A39.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.40.已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.答案:证明:假设函数f(x)的图象与x轴至少有两个交点,…(2分)(1)若f(x)的图象与x轴有两个交点,不妨设两个交点的横坐标分别为x1,x2,且x1<x2,…(5分)由已知,函数f(x)对其定义域内任意实数x1,x2,当x1<x2时,有f(x1)<f(x2).…(7分)又根据假设,x1,x2是函数f(x)的两个零点,所以,f(x1)=f(x2)=0,…(9分)这与f(x1)<f(x2)矛盾,…(10分)所以,函数f(x)的图象不可能与x轴有两个交点.…(11分)(2)若f(x)的图象与x轴交点多于两个,可同理推出矛盾,…(12分)所以,函数f(x)的图象不可能与x轴有两个以上交点.综上,函数f(x)的图象与x轴至多有一个交点…(14分)41.无论m,n取何实数值,直线(3m-n)x+(m+2n)y-n=0都过定点P,则P点坐标为
A.(-1,3)
B.
C.
D.答案:D42.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,则
k=______.答案:因为已知x2+4y2+kz2=36根据柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)构造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故为:9.43.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.44.在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为()个.
A.0
B.1
C.2
D.3答案:B45.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7246.三行三列的方阵.a11a12
a13a21a22
a23a31a32
a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.47.|a|=4,a与b的夹角为30°,则a在b方向上的投影为______.答案:a在b方向上的投影为|a|cos30°=4×32=23故为:2348.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.49.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C50.直线l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐标系中的图形大致是()
A.
B.
C.
D.
答案:C第2卷一.综合题(共50题)1.如图,在圆锥中,B为圆心,AB=8,BC=6
(1)求出这个几何体的表面积;
(2)求出这个几何体的体积.(保留π)答案:圆锥母线AC的长=AB2+BC2=82+62=10(1)表面积=π×62+π×6×10=96π(2)体积=13×π×62×8=96π2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.③②①C.①③②D.③①②答案:∵随机数表法进行抽样,包含这样的步骤,①将总体中的个体编号;②选定开始的数字,按照一定的方向读数;③获取样本号码,∴把题目条件中所给的三项排序为:①③②,故选C.3.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.4.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C5.若双曲线与椭圆x216+y225=1有相同的焦点,与双曲线x22-y2=1有相同渐近线,求双曲线方程.答案:依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴双曲线的方程为y23-x26=1…(13分)6.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是
______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:487.关于x的方程ax+b=0,当a,b满足条件______
时,方程的解集是有限集;满足条件______
时,方程的解集是无限集;满足条件______
时,方程的解集是空集.答案:关于x的方程ax+b=0,有一个解时,为有限集,所以a,b满足条件是:a≠0,b∈R;满足条件a=0,b=0时,方程有无数组解,方程的解集是无限集;满足条件
a=0,b≠0
时,方程无解,方程的解集是空集.故为:a≠0,b∈R;a=0,b=0;
a=0,b≠0.8.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.9.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D10.已知f(x)=,则不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}11.利用“直接插入排序法”给按从大到小的顺序排序,
当插入第四个数时,实际是插入哪两个数之间(
)A.与B.与C.与D.与答案:B解析:先比较与,得;把插入到,得;把插入到,得;12.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.a=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a=cc=bb=a答案:B13.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B14.已知a=4,b=1,焦点在x轴上的椭圆方程是(
)
A.
B.
C.
D.答案:C15.过点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,则切线的方程为______.答案:由圆的一般方程可得圆的圆心与半径分别为:(2,3);1,当切线的斜率存在,设切线的斜率为k,则切线方程为:kx-y-3k+5=0,由点到直线的距离公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切线方程为:3x+4y-29=0;当切线的斜率不存在时,直线为:x=3,满足圆心(2,3)到直线x=3的距离为圆的半径1,x=3也是切线方程;故为:3x+4y-29=0或x=3.16.已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是()A.y是x的增函数B.y是x的减函数C.y随x先增大后减小D.无论x怎样变化,y是常数答案:连接AR,如图所示:由于点R在CD上固定不变,故AR的长为定值又∵E、F分别为AP、PR的中点,∴EF为△APR的中位线,则EF=12AR为定值故无论x怎样变化,y是常数故选D17.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)18.设U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},现有一质点随机落入区域U中,则质点落入M中的概率是()A.2πB.12πC.1πD.2π答案:满足条件U={(x,y)|x2+y2≤1,x,y∈R}的圆,如下图示:其中满足条件M={(x,y)|x|+|y|≤1,x,y∈R}的平面区域如图中阴影所示:则圆的面积S圆=π阴影部分的面积S阴影=2故质点落入M中的概率概率P=S阴影S正方形=2π故选D19.图是正方体平面展开图,在这个正方体中
①BM与ED垂直;
②DM与BN垂直.
③CN与BM成60°角;④CN与BE是异面直线.
以上四个命题中,正确命题的序号是______.答案:由已知中正方体的平面展开图,我们可以得到正方体的直观图如下图所示:由正方体的几何特征可得:①BM与ED垂直,正确;
②DM与BN垂直,正确;③CN与BM成60°角,正确;④CN与BE平行,故CN与BE是异面直线,错误;故为:①②③20.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.21.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125故为:17+18+19+20+21+22+23+24+25=64+12522.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()
A.
B.
C.
D.
答案:A23.函数f(x)=8xx2+2(x>0)()A.当x=2时,取得最小值83B.当x=2时,取得最大值83C.当x=2时,取得最小值22D.当x=2时,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22当且仅当x=2x即x=2时,取得最大值22故选D.24.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为
______.答案:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:|OF||OA|=|FC||AB|?ca=62=3.故为325.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56
000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费ξ(随机变量)的分布列;
(2)试比较哪一种方案好.答案:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,两河流同时发生洪水的概率为P(A?B)=0.045,都不发生洪水的概率为P(.A?.B)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.26.已知一9行9列的矩阵中的元素是由互不相等的81个数组成,a11a12…a19a21a22…a29…………a91a92…a99若每行9个数与每列的9个数按表中顺序分别构成等差数列,且正中间一个数a55=7,则矩阵中所有元素之和为______.答案:∵每行9个数按从左至右的顺序构成等差数列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9个数按从上到下的顺序也构成等差数列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有数之和为81a55=567,故为567.27.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.28.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.29.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a=1
C.a>1
D.以上均不对答案:C30.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2
表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.31.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.32.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是______.答案:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=836=29,故为:2933.数集{1,x,2x}中的元素x应满足的条件是______.答案:根据集合中元素的互异性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故为:x≠1且x≠12且x≠0.34.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:235.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C36.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.37.(1)在数轴上求一点的坐标,使它到点A(9)与到点B(-15)的距离相等;
(2)在数轴上求一点的坐标,使它到点A(3)的距离是它到点B(-9)的距离的2倍.答案:(1)设该点为M(x),根据题意,得A、M两点间的距离为d(A,M)=|x-9|,B、M两点间的距离为d(M,B)=|-15-x|,结合题意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐标为-3故所求点的坐标为-3.(2)设该点为N(x'),则A、N两点间的距离为d(A,N)=|x'-3|,B、N两点间的距离为d(N,B)=|-9-x'|,根据题意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求点的坐标是-21或-5.38.用反证法证明命题“如果a>b,那么a3>b3“时,下列假设正确的是()
A.a3<b3
B.a3<b3或a3=b3
C.a3<b3且a3=b3
D.a3>b3答案:B39.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先将二进制数11111(2)化为十进制数,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框图对累加变量S和循环变量i的赋值S=1,i=1,i不满足判断框中的条件,执行S=1+2×S=1+2×1=3,i=1+1=2,i不满足条件,执行S=1+2×3=7,i=2+1=3,i不满足条件,执行S=1+2×7=15,i=3+1=4,i仍不满足条件,执行S=1+2×15=31,此时31是要输出的S值,说明i不满足判断框中的条件,由此可知,判断框中的条件应为i>4.故选D.40.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C41.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故为:342.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)43.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.44.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为
______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:245.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.46.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,m⊥β,则α⊥β,反过来则不一定所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.47.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°48.己知集合A={sinα,cosα},则α的取值范围是______.答案:由元素的互异性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范围是{α|α≠kπ+π4,k∈z},故为{α|α≠kπ+π4,k∈z}.49.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为()
A.101
B.808
C.1212
D.2012答案:B50.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.第3卷一.综合题(共50题)1.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()
A.2个
B.3个
C.6个
D.9个
答案:D2.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A3.直线y=2x与直线x+y=3的交点坐标是
______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).4.选做题
已知抛物线,过原点O直线与交于两点。
(1)求的最小值;
(2)求的值答案:解:设直线的参数方程为与抛物线方程
联立得5.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G
是何种曲线之间的关系是:______
圆M与的位置相离相切相交G
是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率
0<e<1,此时r<d,圆M与准线相离;抛物线的离心率
e=1,此时r=d,圆M与准线相切;双曲线的离心率
e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.6.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:17.下列程序表示的算法是辗转相除法,请在空白处填上相应语句:
(1)处填______;
(2)处填______.答案:∵程序表示的算法是辗转相除法,根据辗转相除法,先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,一直算到余数为零时m的值即可,∴(1)处应该为r=mMODn;(2)处应该为r=0.故为r=mMODn;r=0.8.如图,海中有一小岛,周围3.8海里内有暗礁.一军舰从A地出发由西向东航行,望见小岛B在北偏东75°,航行8海里到达C处,望见小岛B在北偏东60°.若此舰不改变舰行的方向继续前进,问此舰有没有触礁的危险?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,过B作AC的垂线垂足为D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴没有危险.9.平面向量、的夹角为60°,=(2,0),=1,则=(
)
A.
B.
C.3
D.7答案:B10.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为______.答案:∵|AF2|,|AB|,|BF2|成等差数列∴|AF2|+|BF2|=2|AB|,又椭圆E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故为:4311.在空间直角坐标系中,O为坐标原点,设A(,,),B(,,0),C(
,,),则(
)
A.OA⊥AB
B.AB⊥AC
C.AC⊥BC
D.OB⊥OC答案:C12.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()
A.是锐角三角形
B.是钝角三角形
C.是直角三角形
D.不存在答案:C13.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C14.曲线(θ为参数)上的点到原点的最大距离为()
A.1
B.
C.2
D.答案:C15.若曲线C的极坐标方程为
ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y16.已知点M(1,2),N(1,1),则直线MN的倾斜角是()A.90°B.45°C.135°D.不存在答案:∵点M(1,2),N(1,1),则直线MN的斜率不存在,故直线MN的倾斜角是90°,故选A.17.设点P(,1)(t>0),则||(O为坐标原点)的最小值是()
A.3
B.5
C.
D.答案:D18.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn19.如图,有两条相交成π3角的直线EF,MN,交点是O.一开始,甲在OE上距O点2km的A处;乙在OM距O点1km的B处.现在他们同时以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.设与OE同向的单位向量为e1,与OM同向的单位向量为e2.
(1)求e1,e2;
(2)若过2小时后,甲到达C点,乙到达D点,请用e1,e2表示CD;
(3)若过t小时后,甲到达G点,乙到达H点,请用e1,e2表示GH;
(4)什么时间两人间距最短?答案:(1)由题意可得e1=12OA,e2=OB,(2)若过2小时后,甲到达C点,乙到达D点,则OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:经过t小时后,甲到达G点,乙到达H点,则OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故两人间距离y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函数的知识可知,当t=--62×12=14时,上式取到最小值32,故14时两人间距离最短.20.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.341321.若直线y=x+b与圆x2+y2=2相切,则b的值为(
)
A.±4
B.±2
C.±
D.±2
答案:B22.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B23.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1024.设P,Q为△ABC内的两点,且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.25.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于
______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.26.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D27.当x∈N+时,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.28.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()
A.
B.
C.
D.答案:A29.若k∈R,则“k>3”是“方程表示双曲线”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:A30.函数f(x)为偶函数,其图象与x轴有四个交点,则该函数的所有零点之和为()A.4B.2C.1D.0答案:因为函数f(x)为偶函数,所以函数图象关于y轴对称.又其图象与x轴有四个交点,所以四个交点关于y轴对称,不妨设四个交点的横坐标为x1,x2,x3,x4,则根据对称性可知x1+x2+x3+x4=0.故选D.31.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.32.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()
A.26
B.24
C.20
D.19
答案:D33.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.34.袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字互不相同的概率;
(Ⅱ)用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和均值.答案:(I)由题意知本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024建筑工程地勘合同正规范本
- 专用药品配送代理合同2024年范本版B版
- 2025高考生物备考说课稿:胚胎工程
- 福建省南平市武夷山第三中学2022年高三数学理上学期期末试题含解析
- 福建省南平市吴屯中学2020-2021学年高三数学文期末试题含解析
- 福建省南平市松溪县职业中学高二化学联考试卷含解析
- 2024版飞机购销合同
- 专利与商标权归属合同范本2024一
- 母爱市场之策略洞察
- 外籍人才中介合同(2篇)
- 2024年中医执业医师资格考试题库及答案
- 柯桥区五年级上学期语文期末学业评价测试试卷
- 2022年广东省中考物理试题试题(含答案+解析)
- 北京市丰台区2024届高三下学期二模试题 数学 含解析
- 质量保证措施
- 耕地占补平衡系统课件
- 2024年三年级品社下册《邻居家的小伙伴》教案2 苏教版
- 交易平台保证金协议书
- 中医师承跟师笔记50篇
- 医院OA办公系统技术需求
- 文物保护中的智能材料应用
评论
0/150
提交评论