版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆工贸职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=______.答案:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB+AD=AC,又O为AC的中点,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故为:2.2.方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是
______.答案:椭圆方程化为x22+y22k=1.焦点在y轴上,则2k>2,即k<1.又k>0,∴0<k<1.故为:0<k<13.已知离散型随机变量X服从二项分布X~B(n,p)且E(X)=3,D(X)=2,则n与p的值分别为()
A.
B.
C.
D.答案:B4.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()
A.直线
B.椭圆
C.抛物线
D.双曲线答案:D5.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:22136.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A7.已知直线y=kx+1与椭圆x25+y2m=1恒有公共点,则实数m的取值范围为()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直线y=kx+1恒过点M(0,1)要使直线y=kx+1与椭圆x25+y2m=1恒有公共点,则只要M(0,1)在椭圆的内部或在椭圆上从而有m>0m≠505+1m≤1,解可得m≥1且m≠5故选D.8.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.答案:证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切线.(7分)9.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A10.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()
A.内切
B.相交
C.外切
D.相离答案:B11.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7212.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()
A.恰有1个白球;恰有2个白球
B.至少有1个白球;都是白球
C.至少有1个白球;
至少有1个红球
D.至少有1个白球;
都是红球答案:A13.已知直线l:kx-y+1+2k=0.
(1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).14.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A15.已知向量OC=(2,2),CA=(2cosa,2sina),则向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故选B.16.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.17.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B18.在下面的图示中,结构图是()
A.
B.
C.
D.
答案:B19.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B20.等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为
______.答案:等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,所以梯形的高为:1,按平行于上、下底边取x轴,则直观图A′B′C′D′的高为:12sin45°=24所以直观图的面积为:12×(1+3)×24=22故为:2221.袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率;
(Ⅱ)若无放回地取3次,每次取1个球,
①求在前2次都取出红球的条件下,第3次取出黑球的概率;
②求取出的红球数X
的分布列和数学期望.答案:(Ⅰ)记“取出1个红球2个黑球”为事件A,根据题意有P(A)=C13(37)×(47)2=144343;
所以取出1个红球2个黑球的概率是144343.(Ⅱ)①记“在前2次都取出红球”为事件B,“第3次取出黑球”为事件C,则P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出红球的条件下,第3次取出黑球的概率是45.②随机变量X
的所有取值为0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列为:所以EX=0×435+1×1835+2×1235+3×135=4535=97.22.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()
A.9
B.18
C.27
D.36答案:B23.曲线2y2+3x+3=0与曲线x2+y2-4x-5=0的公共点的个数是()
A.4
B.3
C.2
D.1答案:D24.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.25.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.26.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故选A27.设求证答案:证明略解析:左边-右边===
=
∴原不等式成立。证法二:左边>0,右边>0。∴原不等式成立。28.试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.答案:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.29.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),则△ABC的面积等于()
A.
B.
C.
D.
答案:A30.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B31.将函数的图象F按向量平移后所得到的图象的解析式是,求向量.答案:向量解析:将函数的图象F按向量平移后所得到的图象的解析式是,求向量.32.如图,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为
______度.答案:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等边三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故为:30.33.
008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:
比赛项目
票价(元/场)
篮球
1000
足球
800
乒乓球
500
若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为
A.2
B.3
C.4
D.5
答案:D34.(每题6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本试题主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解运用。(1)移向,通分,合并,将分式化为整式,然后得到解集。(2)首先分析函数式有意义的x的取值,然后保证两边都有意义的时候,且都为正,两边平方求解得到。解:(2)当8-x<0显然成立。当8-x》0时,则两边平方可得。所以35.以双曲线x24-y216=1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程为______.答案:双曲线x24-y216=1的右焦点为F(25,0),一条渐近线为2x+y=0.∴所求圆的圆心为(25,0).∵所求圆被渐近线2x+y=0截得的弦长为6,∴圆心为(25,0)到渐近线2x+y=0的距离d=455=4,圆半径r=9+16=5,∴所求圆的方程是(x-25)2+y2=25.故为(x-25)2+y2=25.36.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D37.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.38.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:139.下列数字特征一定是数据组中的数是()
A.众数
B.中位数
C.标准差
D.平均数答案:A40.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.41.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C42.直线y=33x绕原点逆时针方向旋转30°后,所得直线与圆(x-2)2+y2=3的交点个数是______.答案:∵直线y=33x的斜率为33,∴此直线的倾斜角为30°,∴此直线绕原点逆时针方向旋转30°后倾斜角为60°,∴此直线旋转后的方程为y=3x,由圆(x-2)2+y2=3,得到圆心坐标为(2,0),半径r=3,∵圆心到直线y=3x的距离d=232=3=r,∴该直线与圆相切,则直线与圆(x-2)2+y2=3的交点个数是1.故为:143.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1244.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B45.在四边形ABCD中,若=+,则()
A.ABCD为矩形
B.ABCD是菱形
C.ABCD是正方形
D.ABCD是平行四边形答案:D46.设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=______.答案:因为函数f(x)是定义在[a,b]上的奇函数,所以定义域关于原点对称,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故为:0.47.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5048.已知求证:答案:证明见解析解析:证明:49.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.50.不等式的解集是(
)
A.(-∞,-1)∪(-1,2]
B.[-1,2]
C.(-∞,-1)∪[2,+∞)
D.(-1,2]答案:D第2卷一.综合题(共50题)1.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.2.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()
A.
B.
C.
D.(1,2)答案:B3.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:2564.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.5.若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个根在(1,3)内,求a的取值范围。答案:解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线,如右图所示,∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴,即,解得-12<a<0,故所求a的取值范围是{a|-12<a<0}。6.已知z是纯虚数,z+21-i是实数,则z=______.答案:令Z=bi,则z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是实数,故b=-2则Z=-2i故为:-2i7.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)8.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C9.点P从(2,0)出发,沿圆x2+y2=4按逆时针方向运动弧长到达点Q,则点Q的坐标为()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C10.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3211.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1412.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.13.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上答案:C14.从点A(2,-1,7)沿向量=(8,9,-12)的方向取线段长||=34,则B点坐标为()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B15.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的()A.原命题B.逆命题C.否命题D.逆否命题答案:设命题p为“若k,则s”;则其否命题q是“若¬k,则¬s”;∴命题q的逆命题r是“若¬s,则¬k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题.故选C.16.设a=(x,y,3),b=(3,3,5),且a⊥b,则x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a•b=3x+3y+15=0,∴x+y=-5,故选
C.17.当a≠0时,y=ax+b和y=bax的图象只可能是()
A.
B.
C.
D.
答案:A18.函数y=ax+b和y=bax(a≠0,b>0,且b≠1)的图象只可能是()A.
B.
C.
D.
答案:对于A:函数y=ax+b递增可得a>0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0故A正确对于B:函数y=ax+b递增可得a>0,b>1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故B不正确对于C:函数y=ax+b递减可得a<0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故C不正确对于D:函数y=ax+b递减可得a<0,b>1;函数y=bax(a≠0,b>0,且b≠1)递增可得b>1且a>0,矛盾,故D不正确故选A19.设O、A、B、C为平面上四个点,(
)
A.2
B.2
C.3
D.3答案:C20.设函数g(x)=ex
x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故为:12.21.高二年级某班有男生36人,女生28人,从中任选一位同学为数学科代表,则不同选法的种数是()A.36B.28C.64D.1008答案:高二年级某班有男生36人,女生28人,即共有64人,从中任选一位同学为数学科代表,则不同选法的种数64,故选C.22.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()
A.
B.
C.
D.答案:B23.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.24.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.25.用反证法证明命题“三角形的内角中至多有一个是钝角”时,第一步是:“假设______.答案:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“三角形的内角中至多有一个是钝角”的否定为:“三角形的内角中至少有两个钝角”,故为“三角形的内角中至少有两个钝角”.26.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.27.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求证:S2n>1+n2(n≥2,n∈N*).答案:证明:(1)当n=2时,左边=1+12+13+14=2512,右边=1+22=2,∴左边>右边(2)假设n=k(k≥2)时不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,当n=k+1时,不等式左边S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,综上(1)(2)可知S2n>1+n2对于任意的n≥2正整数成立.28.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.29.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A30.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.31.参数方程(0<θ<2π)表示()
A.双曲线的一支,这支过点(1,)
B.抛物线的一部分,这部分过(1,)
C.双曲线的一支,这支过点(-1,)
D.抛物线的一部分,这部分过(-1,)答案:B32.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切线,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.33.设f(x)=ex(x≤0)ln
x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.34.如图,若直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3三个数从小到大的顺序依次是______.答案:由函数的图象可知直线l1,l2,l3的斜率满足k1<0<k3<k2所以k1,k2,k3三个数从小到大的顺序依次是k1,k3,k2故为:k1,k3,k2.35.甲,乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论:()
工人
甲
乙
废品数
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲的产品质量比乙的产品质量好一些
B.乙的产品质量比甲的产品质量好一些
C.两人的产品质量一样好
D.无法判断谁的质量好一些答案:B36.若a,b∈R,求证:≤+.答案:证明略解析:证明
当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.37.下列四个命题中,正确的有
个
①;
②;
③,使;
④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题38.设双曲线的两条渐近线为y=±x,则该双曲线的离心率e为()
A.5
B.或
C.或
D.答案:C39.已知△ABC的顶点坐标分别为A(2,3),B(-1,0),C(2,0),则△ABC的周长是()
A.2
B.6+
C.3+2
D.6+3答案:D40.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,
(1)设直线l的倾斜角为α,写出直线l的参数方程;
(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p241.在半径为R的球内作一内接圆柱,这个圆柱的底面半径和高为何值时,它的侧面积最大?并求此最大值.答案:解
如图,设内接圆柱的高为h,圆柱的底面半径为r,则h2+4r2=4R2因为h2+4r2≥4rh,当且仅当h=2r时取等.所以4R2≥4rh,即rh≤R2所以,S侧=2πrh≤2πR2,当且仅当h=2r时取等.又因为h2+4r2=4R2,所以r=22R,h=2R时取等综上,当内接圆柱的底面半径为22R,高为2R时,它的侧面积最大,为2πR242.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C43.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D44.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()
A.
B.
C.
D.答案:C45.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(
)
A.
B.
C.
D.答案:D46.各项都为正数的数列{an},满足a1=1,an+12-an2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2为首项为1,公差为2的等差数列,∴an2=1+(n-1)×2=2n-1,又an>0,则an=2n-1(Ⅱ)只需证:1+13+…+12n-1≤
2n-1.1当n=1时,左边=1,右边=1,所以命题成立.当n=2时,左边<右边,所以命题成立②假设n=k时命题成立,即1+13+…+12k-1≤2k-1,当n=k+1时,左边=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命题成立由①②可知,1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.47.下列点在x轴上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C48.选修4-2:矩阵与变换
已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.
…(10分)49.在参数方程所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是()
A.
B.
C.
D.答案:B50.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.第3卷一.综合题(共50题)1.频率分布直方图的重心是()
A.众数
B.中位数
C.标准差
D.平均数答案:D2.如图是从甲、乙两个班级各随机选出9名同学进行测验成绩的茎叶图,从图中看,平均成绩较高的是______班.答案:∵茎叶图的数据得到甲同学成绩:46,58,61,64,71,74,75,84,87;茎叶图的数据得到乙同学成绩:57,62,65,75,79,81,84,87,89.∴甲平均成绩为69;乙平均成绩为75;故为:乙.3.直线(t为参数)的倾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D4.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是
______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:485.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A6.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=727.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或1328.给出一个程序框图,输出的结果为s=132,则判断框中应填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A9.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.10.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程
y=
bx+
a中的
b为9.4,则
a=______.答案:由图表中的数据可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即样本中心为(3.5,42),将点代入回归方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故为:9.1.11.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A12.如图,过点P作⊙O的割线PAB与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=______.答案:如图,PE是圆的切线,∴∠PEB=∠PAC,∵AE是∠APE的平分线,∴∠EPC=∠APC,根据三角形的外角与内角关系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC为等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故为:75°.13.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角坐标系xAy中,动点P的轨迹方程是______.答案:作PN⊥AD,则PN⊥面A1D1DA,作NH⊥A1D1,N,H为垂足,由三垂线定理可得PH⊥A1D1.以AD,AB,AA1为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故为:x2=2y+8.14.把的图象按向量平移得到的图象,则可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的图象,需将的图象向右平移个单位长度,故选D。15.平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c是否为双曲线?答案:由题意,设两定点间的距离为2c,则2a<2c时,轨迹为双曲线的一支2a=2c时,轨迹为一条射线2a>2c时,无轨迹.16.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:217.两条直线l1:x-3y+2=0与l2:x-y+2=0的夹角的大小是______.答案:由于两条直线l1:x-3y+2=0与l2:x-y+2=0的斜率分别为33、1,设两条直线的夹角为θ,则tanθ=|k2-k11+k2•k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故为π12.18.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A19.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(
)
A.(0,1)
B.
C.
D.答案:C20.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差
D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0答案:D21.给定点A(x0,y0),圆C:x2+y2=r2及直线l:x0x+y0y=r2,给出以下三个命题:
①当点A在圆C上时,直线l与圆C相切;
②当点A在圆C内时,直线l与圆C相离;
③当点A在圆C外时,直线l与圆C相交.
其中正确的命题个数是()
A.0
B.1
C.2
D.3答案:D22.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()
A.3,2
B.2,3
C.2,30
D.30,2答案:A23.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.答案:(1)ξ的所有可能取值为0,1,2.依题意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列为ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)设“男生甲被选中的情况下,女生乙也被选中”为事件C,“男生甲被选中”为事件A,“女生乙被选中”为事件B从4个男生、2个女生中选3人,男生甲被选中的种数为n(A)=C52=10,男生甲被选中,女生乙也被选中的种数为n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被选中的情况下,女生乙也被选中的概率为25.24.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°25.函数y=x2x4+9(x≠0)的最大值为______,此时x的值为______.答案:y=x2x4+9=1x2+9x2≤129=16,当且仅当x2=9x2,即x=±3时取等号.故为:16,
±326.已知2,4,2x,4y四个数的平均数是5而5,7,4x,6y四个数的平均数是9,则xy的值是______.答案:因为2,4,2x,4y四个数的平均数是5,则2+4+2x+4y=4×5,又由5,7,4x,6y四个数的平均数是9,则5+7+4x+6y=4×9,x与y满足的关系式为x+2y=72x+3y=12解得x=3y=2故为6.27.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.28.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)29.已知复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=______.答案:当m2-5m+6=0m2-3m≠0时,即m=2或m=3m≠0且m≠3⇒m=2时复数z为纯虚数.故为:2.30.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+431.,不等式恒成立的否定是
▲
答案:,不等式成立解析::,不等式成立点评:本题考查推理与证明部分命题的否定,属于容易题32.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C33.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样的方法抽取容量为180的样本,则应从C中抽取样本的个数为______个.答案:由分层抽样的定义可得应从B中抽取的个体数为180×25+3+2=36,故为:36.34.直线y=k(x-2)+3必过定点,该定点的坐标为()
A.(3,2)
B.(2,3)
C.(2,-3)
D.(-2,3)答案:B35.设P1(4,-3),P2(-2,6),且P在P1P2的延长线上,使||=2||,则点P的坐标
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A36.求下列函数的定义域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房地产开发与销售合同
- 金融史课件教学课件
- 《视频转场》课件
- 《石油产品的性质》课件
- 2024年度建筑行业标准制定与推广合同3篇
- 化妆品合同范本
- 康复护理与临床护理的区别
- 《打造魅力班会》课件
- 钢材供货合同范本4篇
- 劳动合同转外包补偿标准
- 建设新型能源体系提高能源资源安全保障能力
- GB/T 22082-2024预制混凝土衬砌管片
- 江苏省无锡市锡山区天一中学2025届高一物理第一学期期末质量检测试题含解析
- 《IC品质控制》课件
- 2024年事业单位招聘考试计算机基础知识复习题库及答案(共700题)
- 阿尔茨海默病的诊断
- 2024年时事政治题库附参考答案(综合题)
- 2024-2030年中国度假酒店行业未来发展趋势及投资经营策略分析报告
- 德勤-集团信息化顶层规划方案
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 24秋国家开放大学《会计信息系统(本)》测试题参考答案
评论
0/150
提交评论