版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年郑州电力职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设点P(+,1)(t>0),则||(O为坐标原点)的最小值是()
A.
B.
C.5
D.3答案:A2.给出命题:
①线性回归分析就是由样本点去寻找一条贴近这些点的直线;
②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;
③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;
④线性相关关系就是两个变量间的函数关系.其中正确的命题是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D3.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B4.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为()A.2B.3C.4D.无数个答案:由题意,两腰为2,底角为30°;两腰为2,顶角为30°;底边为2,底角为30°;底边为2,顶角为30°.∴共4个元素,故选C.5.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=______.答案:∵某校有老师200人,男学生1
200人,女学生1
000人.∴学校共有200+1200+1000人由题意知801000=n200+1200+1000,∴n=192.故为:1926.设集合A={0,1,2,3},B={1,2,3,4},则集合A∩B的真子集的个数为()A.32个B.16个C.8个D.7个答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},?.共有7个.故选D.7.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.8.一直线倾斜角的正切值为34,且过点P(1,2),则直线方程为______.答案:因为直线倾斜角的正切值为34,即k=3,又直线过点P(1,2),所以直线的点斜式方程为y-2=34(x-1),整理得,3x-4y+5=0.故为3x-4y+5=0.9.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B10.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C11.如图,四面体ABCD中,点E是CD的中点,记=(
)
A.
B.
C.
D.
答案:B12.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B13.已知x与y之间的一组数据:
x
0
1
2
3
y
2
4
6
8
则y与x的线性回归方程为y=bx+a必过点()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B14.在平行四边形ABCD中,AC与DB交于点O,E是线段OD的中点,AE延长线与CD交于F.若AC=a,BD=b,则AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由题意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于点G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故选B.15.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(
)
A.
B.
C.
D.
答案:D16.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)17.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.18.直线l1过点P(0,-1),且倾斜角为α=30°.
(I)求直线l1的参数方程;
(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)
(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)19.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为1320.已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值()
A.3
B.
C.2
D.答案:B21.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D22.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有______种.(用数字作答)答案:4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻,所以第一步应先取两个老师且绑定有C23×A22=6种方法,第二步将四名学生全排列,共有4!=24种方法,第三步将绑定的两位老师与剩下的一位老师看作两个元素,插入四个学生隔开的五个空中,共有A25=20种方法故总的站法有6×24×20=2880种故为288023.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C24.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.25.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()
A.
B.
C.
D.答案:A26.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.27.将函数的图象F按向量平移后所得到的图象的解析式是,求向量.答案:向量解析:将函数的图象F按向量平移后所得到的图象的解析式是,求向量.28.(文)不等式的解集是(
)A.B.C.D.答案:D解析:【思路分析】:原不等式可化为,得,故选D.【命题分析】考查不等式的解法,要求同解变形.29.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()
A.一颗是3点,一颗是1点
B.两颗都是2点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点答案:D30.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|
=1故为:131.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A32.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.33.曲线xy=1的参数方程不可能是()
A.
B.
C.
D.答案:B34.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°35.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:036.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是______.答案:当a>0时,方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1当a≤0时函数f(x)=2ax2-x-1在(0,1)内恰无解.故为:a>137.直线ax+by=1与圆x2+y2=1有两不同交点,则点P(a,b)与圆的位置关系为______.答案:圆心到直线ax+by=1的距离,1a2+b2,∵直线ax+by=1与圆x2+y2=1有两不同交点,∴1a2+b2<1即a2+b2>1.故为:点在圆外.38.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()
A.
B.
C.
D.答案:B39.设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件答案:A40.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()
A.0
B.1
C.2
D.4答案:B41.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(
)。答案:(-4,-2)42.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.43.语句“若a>b,则a+c>b+c”是()
A.不是命题
B.真命题
C.假命题
D.不能判断真假答案:B44.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1,即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此,3a+1+3b+1+3c+1的最大值为18=3245.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.46.直线l过点(-3,1),且它的一个方向向量n=(2,-3),则直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得n=(2,-3)与a=(1,k)互相平行∴12=k-3⇒k=-32所以直线l的点斜式方程为:y-1=-32(x+3)化成一般式:3x+2y+7=0故为:3x+2y+7=047.设M是□ABCD的对角线的交点,O为任意一点(且不与M重合),则OA+OB+OC+OD
等于()A.OMB.2OMC.3OMD.4OM答案:∵O为任意一点,不妨把A点O看成O点,则OA+OB+OC+OD=0+AB+AC
+AD,∵M是□ABCD的对角线的交点,∴0+AB+AC+AD=2AC=4AM故选D48.已知,向量与向量的夹角是,则x的值为()
A.±3
B.±
C.±9
D.3答案:D49.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A50.点M(2,-3,1)关于坐标原点对称的点是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A第2卷一.综合题(共50题)1.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()
A.2
B.4
C.6
D.7
答案:D2.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).3.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.4.曲线x=t+1ty=12(t+1t)(t为参数)的直角坐标方程是______.答案:∵曲线C的参数方程x=t+1ty=12(t+1t)(t为参数)x=t+1t≥2,可得x的限制范围是x≥2,再根据x2=t+1t+2,∴t+1t=x2-2,可得直角坐标方程是:x2=2(y+1),(x≥2),故为:x2=2(y+1),(x≥2).5.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(
)。(取整数值)答案:82°6.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意自然数均有xn+1=f(xn),则x2004的值为()
A.1B.2C.4D.5答案:由于函数f(x)定义如下表:故数列{xn}满足:5,2,1,4,5,2,1,…是一个周期性变化的数列,周期为:4.∴x2004=x0=5.故选D.7.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()
A.4
B.
C.
D.答案:D8.同时掷两颗骰子,得到的点数和为4的概率是______.答案:同时掷两颗骰子得到的点数共有36种情况,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和为4的情况数有3种,即(1,3)(2,2)(3,1)所以所求概率为336=112,故为:1129.在极坐标系中,过点(22,π4)作圆ρ=4sinθ的切线,则切线的极坐标方程是______.答案:(22,π4)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2故为:ρcosθ=210.______称为向量的长度(或称为模),记作
______,______称为零向量,记作
______,______称为单位向量.答案:向量AB所在线段AB的长度,即向量AB的大小,称为向量AB的长度(或成为模),记作|AB|;长度为零的向量称为零向量,记作0;长度等于1个单位的向量称为单位向量.故为:向量AB所在线段AB的长度,即向量AB的大小,|AB|;长度为零的向量,0;长度等于1个单位的向量.11.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底.其中正确的命题是[
]A.①②
B.①③
C.②③
D.①②③答案:C12.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C13.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C14.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为()
A.0.1
B.0.2
C.0.3
D.0.4答案:C15.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D16.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3217.如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B18.已知A、B、C三点共线,A分的比为λ=-,A,B的纵坐标分别为2,5,则点C的纵坐标为()
A.-10
B.6
C.8
D.10答案:D19.若指数函数f(x)与幂函数g(x)的图象相交于一点(2,4),则f(x)=______,g(x)=______.答案:设f(x)=ax(a>0且a≠1),g(x)=xα将(2,4)代入两个解析式得4=a2,4=2α解得a=2,α=2故为:f(x)=2x,g(x)=x220.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是4和3及x,那么x的值的个数为()
A.1个
B.2个
C.2个以上但有限
D.无数个答案:B21.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-322.已知向量与的夹角为120°,若向量,且,则=()
A.2
B.
C.
D.答案:C23.已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)过点P(0,-2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,
(ⅰ)求点M的轨迹C2的方程;
(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在时,试判断kPQkAQ+kPQkBQ是否为常数?若是,求出这个常数;若不是,请说明理由.答案:(Ⅰ)由题意得p+p2=3,则p=2,…(3分)所以抛物线C1的方程为x2=4y.
…(5分)(Ⅱ)(ⅰ)设过点P(0,-2)的直线方程为y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)抛物线C1在点A,B处的切线方程分别为y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以点M的轨迹C2的方程为y=2
(x<-22或x>22).…(10分)(ⅱ)设Q(m,2)(|m|>22),则kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)•4k+8m8k2-4k•4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ为常数2.
…(15分)24.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=λCA+μCB,则λμ的值为______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故为1225.设双曲线C:x2a2-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且PA=512PB.求a的值.答案:(I)由C与l相交于两个不同的点,故知方程组x2a2-y2=1x+y=1.有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.双曲线的离心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即离心率e的取值范围为(62,2)∪(2,+∞).(II)设A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1•x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.26.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D27.在平行六面体ABCD-A′B′C′D′中,向量是()
A.有相同起点的向量
B.等长的向量
C.共面向量
D.不共面向量答案:C28.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的关系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B29.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()
A.大前提错误
B.小前提错误
C.推理形式错误
D.结论正确答案:A30.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)31.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:
(1)恰有一人能破译的概率;(2)至多有一人破译的概率;
(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.32.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.33.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C34.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;
(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).35.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.36.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)37.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α38.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).39.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A40.已知函数f(x)=
-x+1,x<0x-1,x≥0,则不等式x+(x+1)f(x+1)≤1的解集是()
A.[-1,
2-1]B.(-∞,1]C.(-∞,
2-1]D.[-
2-1,
2-1]答案:C解析:由题意x+(x+1)f(x+1)=41.点M(4,)化成直角坐标为()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B42.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.43.把矩阵变为后,与对应的值是()
A.
B.
C.
D.答案:C44.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C45.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()
A.互斥事件
B.对立事件
C.不是互斥事件
D.前者都不对答案:D46.以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦长为8,所以半径是5所求圆的方程是:x2+y2=25故选D.47.根据学过的知识,试把“推理与证明”这一章的知识结构图画出来.答案:根据“推理与证明”这一章的知识可得结构图,如图所示.48.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填12449.过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,则a的值是______.答案:∵过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故为:32.50.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C第3卷一.综合题(共50题)1.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B2.若直线按向量平移得到直线,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有无数个答案:D解析:设平移向量,直线平移之后的解析式为,即,所以,满足的有无数多个.3.下列说法中正确的是()
A.以直角三角形的一边为轴旋转所得的旋转体是圆锥
B.以直角梯形的一腰为轴旋转所得的旋转体是圆台
C.圆柱、圆锥、圆台的底面都是圆
D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C4.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°5.设a,b,c是正实数,求证:aabbcc≥(abc)a+b+c3.答案:证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc.据排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.6.用反证法证明“a+b=1”时的反设为()
A.a+b>1且a+b<1
B.a+b>1
C.a+b>1或a+b<1
D.a+b<1答案:C7.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B8.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C9.直线(t为参数)的倾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D10.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.11.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.答案:以线段AB的中点为原点,正东方向为x轴的正方向建立直角坐标系,则A(3,0)
B(-3,0)
C(-5,23)依题意|PB|-|PA|=4∴P在以A、B为焦点的双曲线的右支上.这里a=2,c=3,b2=5.其方程为
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在线段BC的垂直平分线上x-3y+7=0…(5分)由方程组x-3y+7=05x2-4y2=20解得
x=8(负值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°东方向.…(10分)12.节假日时,国人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为()
A.27
B.37
C.38
D.8答案:A13.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故选A.14.在正方形ABCD中,已知它的边长为1,设=,=,=,则|++|的值为(
)
A.0
B.3
C.2+
D.2答案:D15.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+p2=4,∴x=3,故为:3.16.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四17.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.18.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面答案:B19.若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.
(1)方程两根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:设f(x)=x2-2ax+2+a,(1)∵两根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。20.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.21.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.22.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.23.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC24.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()
A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角
B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角
C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角
D.以上都不对答案:B25.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A26.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B27.把方程化为以参数的参数方程是(
)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制28.函数f(x)=2|log2x|的图象大致是()
A.
B.
C.
D.
答案:C29.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3230.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D31.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x32.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()
A.1
B.-1
C.±1
D.2答案:A33.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(
)
A.4x+3y-13=0
B.4x-3y-19=0
C.3x-4y-16=0
D.3x+4y-8=0答案:A34.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年岳麓版八年级历史上册阶段测试试卷含答案
- 野生植物资源开发与利用-洞察分析
- 新媒体与传统媒体融合策略-洞察分析
- 二零二五版艺术品抵押贷款合同规范文本4篇
- 二零二五年度交通枢纽车位租赁电子合同(含换乘服务)4篇
- 探究智能互联办公机械系统-洞察分析
- 二零二五年度金属表面修复打磨加工承包协议243篇
- 2025年岳麓版九年级科学下册阶段测试试卷
- 2025年北师大新版九年级地理上册阶段测试试卷含答案
- 2025版智慧农业基地苗木引进及种植合作协议4篇
- 2024年工程咨询服务承诺书
- 青桔单车保险合同条例
- 车辆使用不过户免责协议书范文范本
- 《狮子王》电影赏析
- 2023-2024学年天津市部分区九年级(上)期末物理试卷
- DB13-T 5673-2023 公路自愈合沥青混合料薄层超薄层罩面施工技术规范
- 河北省保定市定州市2025届高二数学第一学期期末监测试题含解析
- 哈尔滨研学旅行课程设计
- 2024 smart汽车品牌用户社区运营全案
- 中医护理人文
- 2024-2030年中国路亚用品市场销售模式与竞争前景分析报告
评论
0/150
提交评论