2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年无锡工艺职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.2.如图算法输出的结果是______.答案:当I=1时,满足循环的条件,进而循环体执行循环则S=2,I=4;当I=4时,满足循环的条件,进而循环体执行循环则S=4,I=7;当I=7时,满足循环的条件,进而循环体执行循环则S=8,I=10;当I=10时,满足循环的条件,进而循环体执行循环则S=16,I=13;当I=13时,不满足循环的条件,退出循环,输出S值16故为:163.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.4.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C5.如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=103,连接DE交BC于点F,AC=4,BC=3.

求证:(1)△ABC∽△EDC;

(2)DF=EF.答案:证明:(1)∵CD为Rt△ABC斜边AB边上的中线∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因为△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD为Rt△ABC斜边AB边上的中线得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因为:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.6.若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______.答案:曲线的极坐标方程为ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化简为(x-2)2+(y-1)2=5,故为(x-2)2+(y-1)2=5.7.若矩阵M=1101,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x,y)是所得的直线上一点,[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直线x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故为:x+2y+2=0.8.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.9.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()

A.43种

B.4×3×2种

C.34种

D.1×2×3种答案:C10.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.11.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()

A.一条线段

B.一段圆弧

C.圆上一群孤立点

D.一个单位圆答案:D12.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(

)。答案:3:113.复数3+4i的模等于______.答案:|3+4i|=32+42=5,故为5.14.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.15.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:116.已知△ABC和点M满足.若存在实数使得成立,则m=()

A.2

B.3

C.4

D.5答案:B17.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.18.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.19.用秦九韶算法求多项式

在的值.答案:.解析:可根据秦九韶算法原理,将所给多项式改写,然后由内到外逐次计算即可.

而,所以有,,,,,.即.【名师指引】利用秦九韶算法计算多项式值关键是能正确地将所给多项式改写,然后由内到外逐次计算,由于后项计算需用到前项的结果,故应认真、细心,确保中间结果的准确性.20.设a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a•c|a|

|c|=-5-22•29=-75858,∴c在a方向上的投影为|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.21.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()

A.432

B.288

C.216

D.108答案:C22.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.23.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()

A.

B.

C.

D.2答案:C24.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°25.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A26.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为1927.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.28.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.29.选修4-4:坐标系与参数方程

已知直线l:x=m+tcosαy=tsinα(t为参数)经过椭圆C:x=2cosφy=3sinφ(φ为参数)的左焦点F.

(Ⅰ)求m的值;

(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.答案:(Ⅰ)将椭圆C的参数方程化为普通方程,得x24+y23=1.a=2,b=3,c=1,则点F坐标为(-1,0).l是经过点(m,0)的直线,故m=-1.…(4分)(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.当sinα=0时,|FA|•|FB|取最大值3;当sinα=±1时,|FA|•|FB|取最小值94.…(10分)30.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C31.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.32.等于()

A.a16

B.a8

C.a4

D.a2答案:C33.用反证法证明“3是无理数”时,第一步应假设“______.”答案:反证法肯定题设而否定结论,从而得出矛盾,题设“3是无理数”,那么假设为:3是有理数.故为3是有理数.34.把矩阵变为后,与对应的值是()

A.

B.

C.

D.答案:C35.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()

A.

B.

C.

D.答案:A36.函数f(x)=8xx2+2(x>0)()A.当x=2时,取得最小值83B.当x=2时,取得最大值83C.当x=2时,取得最小值22D.当x=2时,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22当且仅当x=2x即x=2时,取得最大值22故选D.37.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为()A.3,5B.-3,5C.1,5D.5,-3答案:因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.故选B.38.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:

x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

y=

bx+

a;

(3)估计使用年限为10年时,维修费用为多少?

(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.39.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.

(1)求二面角C-DE-C1的大小;

(2)求异面直线EC1与FD1所成角的大小;

(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).40.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.

求:

(1)d的变化范围;

(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)41.直线3x+5y-1=0与4x+3y-5=0的交点是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C42.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:

①“取出两只红球和一只白球”与“取出一只红球和两只白球”;

②“取出两只红球和一只白球”与“取出3只红球”;

③“取出3只红球”与“取出的3只球中至少有一只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.43.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C44.构成多面体的面最少是()

A.三个

B.四个

C.五个

D.六个答案:B45.已知三个数a=60.7,b=0.76,c=log0.76,则a,b,c从小到大的顺序为______.答案:因为a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故为c<b<a.46.若A、B两点的极坐标为A(4

π3),B(6,0),则AB中点的极坐标是

______(极角用反三角函数值表示)答案:A的直角坐标为:(2,23),所以AB的中点坐标为:(4,3)所以极径为:19;极角为:α,tanα=34所以α=arctan34;AB中点的极坐标是:(19,

arctan34)故为:(19,

arctan34)47.命题“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.对任意x∈Z使x2+2x+m≤0

D.对任意x∈Z使x2+2x+m>0答案:D48.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.49.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.答案:如图①、②所示的实际图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.50.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.

①上海地区面积的70%至80%将降雨;

②上海地区下雨的时间在16.8小时至19.2%小时之间;

③上海地区在相似的气候条件下有70%至80%的日子是下雨的;

④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③第2卷一.综合题(共50题)1.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;

(2)若,求实数a的取值范围答案:(1);(2)。解析:略2.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()

A.

B.1

C.1+

D.答案:D3.试指出函数y=3x的图象经过怎样的变换,可以得到函数y=(13)x+1+2的图象.答案:把函数y=3x的图象经过3次变换,可得函数y=(13)x+1+2的图象,步骤如下:y=3x沿y轴对称y=(13)x左移一个单位y=(13)x+1上移2个单位y=(13)x+1+2.4.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了三组事件:

①至少有1个白球与至少有1个黄球;

②至少有1个黄球与都是黄球;

③恰有1个白球与恰有1个黄球.

其中互斥而不对立的事件共有()组.

A.0

B.1

C.2

D.3答案:A5.点M的直角坐标为(,1,-2),则它的柱坐标为()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C6.读下面的程序:

上面的程序在执行时如果输入6,那么输出的结果为()

A.6

B.720

C.120

D.1答案:B7.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()

A.

B.

C.

D.答案:C8.设直线l过点P(-3,3),且倾斜角为56π

(1)写出直线l的参数方程;

(2)设此直线与曲线C:x=2cosθy=4sinθ(θ为参数)交A、B两点,求|PA|•|PB|答案:(1)由于过点(a,b)倾斜角为α的直线的参数方程为

x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点P(-3,3),倾斜角α=5π6,故直线的参数方程是x=-3-32ty=3+12t(t是参数).…(5分)(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t1,则点A,B的坐标分别为A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直线L的参数方程代入椭圆的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因为t1和t2是方程①的解,从而t1t2=11613,由t的几何意义可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|•|PB|=11613.9.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).

(I)求曲线E的方程;

(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;

(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.10.下列各式中错误的是()

A.||2=2

B.||=||

C.0•=0

D.m(n)=mn(m,n∈R)答案:C11.某学校三个社团的人员分布如下表(每名同学只参加一个社团):

声乐社排球社武术社高一4530a高二151020学校要对这三个社团的活动效果里等抽样调查,按分层抽样的方法从社团成员中抽取30人,结果声乐社被抽出12人,则a=______.答案:根据分层抽样的定义和方法可得,1245+15=30120+a,解得a=30,故为3012.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(

)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.13.已知按向量平移得到,则

.答案:3解析:由平移公式可得解得.14.如图为某平面图形用斜二测画法画出的直观图,则其原来平面图形的面积是(

A.4

B.

C.

D.8

答案:A15.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()A.a=(0,0),b=(1,-2)B.a=(1,-2),b=(2,-4)C.a=(3,5),b=(6,10)D.a=(2,-3),b=(6,9)答案:可以作为基底的向量需要是不共线的向量,A中一个向量是零向量,两个向量共线,不合要求B中两个向量是a=12b,两个向量共线,C项中的两个向量也共线,故选D.16.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.17.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.18.抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为______.答案:∵过焦点且与对称轴y轴垂直的弦长等于p的2倍.∴所求抛物线方程为x2=±16y.故为:x2=±16y.19.在空间直角坐标系中,点P(2,-4,6)关于y轴对称点P′的坐标为P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空间直角坐标系中,点(2,-4,6)关于y轴对称,∴其对称点为:(-2,-4,-6),故为:(-2,-4,-6).20.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:

分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成频率分布表;

(Ⅱ)画出频率分布直方图;

(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.21.用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是()

A.a2=b2

B.a2<b2

C.a2≤b2

D.a2<b2,且a2=b2答案:C22.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体23.下列有关相关指数R2的说法正确的有()

A.R2的值越大,说明残差平方和越小

B.R2越接近1,表示回归效果越差

C.R2的值越小,说明残差平方和越小

D.如果某数据可能采取几种不同回归方程进行回归分析,一般选择R2小的模型作为这组数据的模型答案:A24.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______

(1)有95%的把握认为“这种血清能起到预防感冒的作用”

(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒

(3)这种血清预防感冒的有效率为95%

(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).25.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C26.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于______.答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故为1027.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.28.正方形ABCD中,AB=1,分别以A、C为圆心作两个半径为R、r(R>r)的圆,当R、r满足条件______时,⊙A与⊙C有2个交点(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B29.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.30.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?

(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).

答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=131.设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B32.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()

A.4

B.2

C.4

D.3答案:A33.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)34.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()

A.

B.

C.

D.答案:B35.若下列算法的程序运行的结果为S=132,那么判断框中应填入的关于k的判断条件是

______.答案:本题考查根据程序框图的运算,写出控制条件按照程序框图执行如下:s=1

k=12s=12

k=11s=12×11=132

k=10因为输出132故此时判断条件应为:K≤10或K<11故为:K≤10或K<1136.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立37.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.38.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲线C的方程;

(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.39.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.40.设a1,a2,…,an为正数,证明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:证明:∵a1,a2,…,an为正数,∴要证明a1+a2+…+ann≥n1a1+1a2+…+1an,只要证明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴两式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.41.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1242.在对两个变量x,y进行线性回归分析时,有下列步骤:

①对所求出的回归直线方程作出解释;

②收集数据(xi,yi),i=1,2,…,n;

③求线性回归方程;

④求相关系数;

⑤根据所搜集的数据绘制散点图.

如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D43.在极坐标系中,已知点P(2,),则过点P且平行于极轴的直线的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A44.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是______.答案:当a>0时,方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1当a≤0时函数f(x)=2ax2-x-1在(0,1)内恰无解.故为:a>145.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A46.正态曲线下、横轴上,从均值到+∞的面积为______答案:由正态曲线的对称性特点知,曲线与x轴之间的面积为1,所以从均数到的面积为整个面积的一半,即50%.填:0.5.47.将n2个正整数1,2,3,…,n2填入n×n方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右表就是一个3阶幻方,可知f(3)=15,则f(4)=()

816357492A.32B.33C.34D.35答案:由等差数列得前n项和公式可得,所有数之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故选C.48.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=149.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()

A.点P在直线L上,但不在圆M上

B.点P在圆M上,但不在直线L上

C.点P既在圆M上,又在直线L上

D.点P既不在直线L上,也不在圆M上答案:C50.已知点A(-3,8),B(2,4),若y轴上的点P满足PA的斜率是PB斜率的2倍,则P点的坐标为______.答案:设P(0,y),则∵点P满足PA的斜率是PB斜率的2倍,∴y-80+3=2•y-40-2∴y=5∴P(0,5)故为:(0,5)第3卷一.综合题(共50题)1.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()

A.

B.

C.

D.答案:B2.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C3.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:1618或13824.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:1655.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:106.不等式的解集是

.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.7.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于

______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.8.如图,PA,PB切⊙O于

A,B两点,AC⊥PB,且与⊙O相交于

D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°9.已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3取等号,此时y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故为:37.10.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证

≥,只要证

≥,即证

≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.11.将直线y=x绕原点逆时针旋转60°,所得直线的方程为()

A.y=-x

B.

C.y=-3x

D.答案:A12.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.13.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s

0

5

9

12

n

5

4

3

2当n=12时,不满足“s<10”,则输出n的值2故为:214.若直线x=1的倾斜角为α,则α等于()A.0°B.45°C.90°D.不存在答案:直线x=1与x轴垂直,故直线的倾斜角是90°,故选C.15.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若

=λ+μ,则λ+μ=()

A.1

B.

C.

D.答案:D16.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()

A.

B.

C.

D.答案:C17.设向量a,b的夹角为60°的单位向量,则向量2a+b的模为()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模为7故选B18.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.

(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈

(32

3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;

(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈

(32

3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈

(32

3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)19.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)20.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:121.已知原命题“两个无理数的积仍是无理数”,则:

(1)逆命题是“乘积为无理数的两数都是无理数”;

(2)否命题是“两个不都是无理数的积也不是无理数”;

(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;

其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).22.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.23.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足PN+12NM=0,PM•PF=0.

(Ⅰ)求动点N的轨迹E的方程;

(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.答案:(Ⅰ)设N(x,y),则由PN+12NM=0,得P为MN的中点.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM•PF=-x+y24=0,即y2=4x.∴动点N的轨迹E的方程y2=4x.(Ⅱ)设直线l的方程为y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.设A(x1,y1),B(x2,y2),则

y1+y2=4k,y1y2=-4.假设存在点C(m,0)满足条件,则CA=(x1-m,y1),CB=(x2-m,y2),∴CA•CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴关于m的方程m2-m(4k2+2)-3=0有解.∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.24.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,连接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜边,∴∠BAC为直角,∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故为:8.25.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()

A.0

B.1

C.μ

D.μ答案:C26.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.27.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在这样的点答案:C28.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.29.若直线l经过点A(-1,1),且一个法向量为n=(3,3),则直线方程是______.答案:设直线的方向向量m=(1,k)∵直线l一个法向量为n=(3,3)∴m•n=0∴k=-1∵直线l经过点A(-1,1)∴直线l的方程为y-1=(-1)×(x+1)即x+y=0故为x+y=030.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一焦点.一水平放置的椭圆形台球盘,F1,F2是其焦点,长轴长2a,焦距为2c.一静放在F1点处的小球(半径忽略不计),受击打后沿直线运动(不与直线F1F2重合),经椭圆壁反弹后再回到点F1时,小球经过的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B31.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°32.

如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()

A.10

B.5

C.2

D.10

答案:B33.用数学归纳法证明:

对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:证明:(1)当n=1时,左边=12+1=2,右边=1×2×33=2,所以当n=1时,命题成立;

…(2分)(2)设n=k时,命题成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)则当n=k+1时,左边=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以当n=k+1时,命题成立.综合(1)(2)得:对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)34.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.35.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论