2023年惠州城市职业学院高职单招(数学)试题库含答案解析_第1页
2023年惠州城市职业学院高职单招(数学)试题库含答案解析_第2页
2023年惠州城市职业学院高职单招(数学)试题库含答案解析_第3页
2023年惠州城市职业学院高职单招(数学)试题库含答案解析_第4页
2023年惠州城市职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年惠州城市职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故为:(16,0,-19).2.用综合法或分析法证明:

(1)如果a>0,b>0,则lga+b2≥lga+lgb2(2)求证6+7>22+5.答案:证明:(1)∵a>0,b>0,a+b2≥ab,∴lga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要证6+7>22+5,只需证明(6+7)

2>(8+5)2,即证明242>

240,也就是证明42>40,上式显然成立,故原结论成立.3.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C4.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.5.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°6.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.7.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;

(2)若α外一条直线l与α内的一条直线平行,则l和α平行;

(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.

上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.8.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.9.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.10.下列在曲线上的点是()

A.

B.

C.

D.答案:D11.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.12.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B13.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.

(Ⅰ)求证:B1B∥平面D1AC;

(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)14.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)15.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(

)答案:﹣116.已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是______.答案:设抛物线方程为y2=2px(p>0),将M(1,2)代入y2=2px,得P=2.∴抛物线方程为y2=4x,焦点为F(1,0)由题意知双曲线的焦点为F1(-1,0),F2(1,0)∴c=1对于双曲线,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴双曲线方程为x23-22-y222-2=1.故为:x23-22-y222-2=1.17.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()

A.是锐角三角形

B.是钝角三角形

C.是直角三角形

D.不存在答案:C18.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)•(2b)=-2,则x=______.答案:c-a=(0,0,1-x),(c-a)•(2b)

=(2,4,2)•(0,0,1-x)=2(1-x)=-2,解得x=2,故为2.19.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,则a2+1、a+1、2a的大小分别为:1.25,1.5,1,又因为0<a<1时,y=logax为减函数,所以p>m>n故选D20.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()

A.两个球

B.两个长方体

C.两个圆柱

D.两个圆锥答案:A21.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为()

A.A88

B.A55A44

C.A44A44

D.A85答案:B22.有以下四个结论:

①lg(lg10)=0;

②lg(lne)=0;

③若e=lnx,则x=e2;

④ln(lg1)=0.

其中正确的是()

A.①②

B.①②③

C.①②④

D.②③④答案:A23.离心率e=23,短轴长为85的椭圆标准方程为______.答案:离心率e=23,短轴长为85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以椭圆标准方程为x2144+y280=1或y2144+x280=1故为x2144+y280=1或y2144+x280=124.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.25.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.26.圆锥曲线x=4secθ+1y=3tanθ的焦点坐标是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函数的运算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作双曲线x216-y29=1向右平移1个单位得到,而双曲线x216-y29=1的焦点为(-5,0),(5,0)故所求双曲线的焦点为(-4,0),(6,0)故为:(-4,0),(6,0)27.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。

答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得28.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()

A.

B.

C.

D.答案:B29.在下列条件中,使M与不共线三点A、B、C,一定共面的是

[

]答案:C30.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:831.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C32.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2011的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列∴OP2011的坐标为(2,4020)故为:(2,4020)33.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.34.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为(

A.

B.

C.

D.答案:B35.直线y=x-1的倾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A36.在极坐标系中,点A(2,π2)关于直线l:ρcosθ=1的对称点的一个极坐标为______.答案:在直角坐标系中,A(0,2),直线l:x=1,A关于直线l的对称点B(2,2).由于|OB|=22,OB直线的倾斜角等于π4,且点B在第一象限,故B的极坐标为(22,π4),故为

(22,π4).37.某航空公司经营A,B,C,D这四个城市之间的客运业务,它们之间的直线距离的部分机票价格如下:AB为2000元;AC为1600元;AD为2500元;CD为900元;BC为1200元,若这家公司规定的机票价格与往返城市间的直线距离成正比,则BD间直线距离的票价为(设这四个城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A38.把下列命题写成“若p,则q”的形式,并指出条件与结论.

(1)相似三角形的对应角相等;

(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.39.若直线l经过原点和点A(-2,-2),则它的斜率为()

A.-1

B.1

C.1或-1

D.0答案:B40.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.41.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π42.下列给出的输入语句、输出语句和赋值语句

(1)输出语句INPUT

a;b;c

(2)输入语句INPUT

x=3

(3)赋值语句3=B

(4)赋值语句A=B=2

则其中正确的个数是()

A.0个

B.1个

C.2个

D.3个答案:A43.已知A,B两点的极坐标为(6,)和(8,),则线段AB中点的直角坐标为()

A.(,-)

B.(-,)

C.(,-)

D.(-,-)答案:D44.在同一坐标系中,y=ax与y=a+x表示正确的是()A.

B.

C.

D.

答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.45.编程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE

n<=20s=s+tn=n+1t=t*nWENDPRINT

sEND46.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;

③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.

A.①

B.①③

C.③

D.②答案:C47.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.48.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.49.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制50.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()

A.等边三角形

B.等腰三角形

C.不等边三角形

D.直角三角形答案:B第2卷一.综合题(共50题)1.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:

序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;

(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)2.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C3.8的值为()

A.2

B.4

C.6

D.8答案:B4.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.5.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有______种.(用数字作答)答案:4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻,所以第一步应先取两个老师且绑定有C23×A22=6种方法,第二步将四名学生全排列,共有4!=24种方法,第三步将绑定的两位老师与剩下的一位老师看作两个元素,插入四个学生隔开的五个空中,共有A25=20种方法故总的站法有6×24×20=2880种故为28806.过点(-1,3)且平行于直线x-2y+3=0的直线方程为()

A.x-2y+7=0

B.2x+y-1=0

C.x-2y-5=0

D.2x+y-5=0答案:A7.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.8.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:59.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22

×3=33故为:33.10.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(

A.

B.

C.

D.答案:D11.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C12.已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.

(1)分别求两次变换所对应的矩阵M1,M2;

(2)求△ABC在两次连续的变换作用下所得到△A′B′C′的面积.答案:(1)关于x轴的反射变换M1=100-1,绕原点逆时针旋转90°的变换M2=0-110.(4分)(2)∵M2•M1=0-110100-1=0110,(6分)△ABC在两次连续的变换作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)变换成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面积=12×4×1=2.(10分)13.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).

(1)若AC=λCB,则点C的坐标是______;

(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)214.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;

(I)求恰好选到1名曾经参加过技能培训的员工的概率;

(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×

1528+3×528=15815.若根据10名儿童的年龄

x(岁)和体重

y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是

y=2x+7,已知这10名儿童的年龄分别是

2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C16.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3517.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.18.已知a、b、c是△ABC的三边,且关于x的二次方程x2-2x+lg(c2-b2)-2lga+1=0有等根,判断△ABC的形状.答案:解:∵方程有等根,∴Δ=4-4[lg(c2-b2)-2lga+1]=4-4lg=0,∴lg=1,∴=10,∴c2-b2=a2,即a2+b2=c2,∴△ABC为直角三角形.19.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)20.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.21.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C22.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若AF=3FB,则k=______.答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.23.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()

A.4

B.3

C.2

D.1答案:C24.双曲线的渐近线方程是3x±2y=0,则该双曲线的离心率等于______.答案:∵双曲线的渐近线方程是3x±2y=0,∴ba=32,设a=2k,b=3k,则c=13k,∴e=ca=132.:132.25.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).26.已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值时两圆外切?

(2)m取何值时两圆内切?

(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.答案:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d=(5-1)2+(6-3)2=5,两圆的半径之和为11+61-m,由两圆的半径之和为11+61-m=5,可得m=25+1011.(2)由两圆的圆心距d=(5-1)2+(6-3)2=5等于两圆的半径之差为|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0.第一个圆的圆心(1,3)到公共弦所在的直线的距离为d=|4+9-23|5=2,可得弦长为211-4=27.27.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A28.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B29.若向量,则这两个向量的位置关系是___________。答案:垂直30.下列关于算法的说法不正确的是()A.算法必须在有限步操作之后停止.B.求解某一类问题的算法是唯一的.C.算法的每一步必须是明确的.D.算法执行后一定产生确定的结果.答案:因为算法具有有穷性、确定性和可输出性.由算法的特性可知,A是指的有穷性;C是确定性;D是可输出性.而解决某一类问题的算法不一定唯一,例如求排序问题算法就不唯一,所以,给出的说法不正确的是B.故选B.31.Rt△ABC中,CD是斜边AB上的高,该图中只有x个三角形与△ABC相似,则x的值为()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三对相似三角形,该图中只有2个三角形与△ABC相似.故选B.32.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故为:910.33.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191034.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()

A.3,

B.3,

C.2,

D.2,1答案:C35.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长分别为p、q,则1p+1q=______.答案:设PQ的斜率k=0,因抛物线焦点坐标为(0,14a),把直线方程y=14a

代入抛物线方程得x=±12a,∴PF=FQ=12a,从而

1p+1q=2a+2a=4a,故为:4a.36.正方体的内切球和外接球的半径之比为

A.:1

B.:2

C.2:

D.:3答案:D37.设x1、x2、y1、y2是实数,且满足x12+x22≤1,

证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分38.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是

()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.39.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.40.在平行四边形ABCD中,等于()

A.

B.

C.

D.答案:C41.如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.

(Ⅰ)建立适当的坐标系,求出该抛物线的方程;

(Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;

(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)答案:(Ⅰ)过F作l的垂线交l于K,以KF的中点为原点,KF所在直线为x轴建立平面直角坐标系如图1,并设|KF|=p,则可得该抛物线的方程为

y2=2px(p>0);(Ⅱ)该命题为真命题,证明如下:如图2,设PQ中点为M,P、Q、M在抛物线准线l上的射影分别为A、B、D,∵PQ是抛物线过焦点F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位线,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ为直径的圆的圆心,∴圆M与l相切.(Ⅲ)选择椭圆类比(Ⅱ)所写出的命题为:“过椭圆一焦点F的直线与椭圆交于P、Q两点,则以PQ为直径的圆与椭圆相应的准线l相离”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则0<e<1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圆M与准线l相离.选择双曲线类比(Ⅱ)所写出的命题为:“过双曲线一焦点F的直线与双曲线交于P、Q两点,则以PQ为直径的圆与双曲线相应的准线l相交”.此命题为真命题,证明如下:证明:设PQ中点为M,椭圆的离心率为e,则e>1,P、Q、M在相应准线l上的射影分别为A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位线,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圆M与准线l相交.42.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.43.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)44.直线2x-y=7与直线3x+2y-7=0的交点是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A45.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.a<c<bB.b<c<aC.a<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故选D.46.若函数f(x)=x+1的值域为(2,3],则函数f(x)的定义域为______.答案:∵f(x)=x+1的值域为(2,3],∴2<x+1≤3∴1<x≤2故为:(1,2]47.数据a1,a2,a3,…,an的方差为σ2,则数据2a1+3,2a2+3,2a3+3,…,2an+3的方差为______.答案:∵数据a1,a2,a3,…,an的方差为σ2,∴数据2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故为:4σ2.48.已知单位向量a,b的夹角为,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B49.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C50.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:4第3卷一.综合题(共50题)1.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.2.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).3.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.4.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()

A.不全相等

B.均不相等

C.都相等,且为

D.都相等,且为答案:C5.直线3x+5y-1=0与4x+3y-5=0的交点是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C6.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.7.已知点M在平面ABC内,并且对空间任意一点O,有OM=xOA+13OB+13OC,则x的值为()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四点共面,∴必有x+13+13=1,解之可得x=13,故选D8.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()

A.5-

B.5+

C

D.10答案:B9.写出下列命题非的形式:

(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;

(2)q:若x=3或x=4,则方程x2-7x+12=0.答案:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.10.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C11.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故为[1,2).12.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A13.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:1214.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,515.椭圆x=3cosθy=4sinθ的离心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e=ca=74.故为:74.16.已知一直线的斜率为3,则这条直线的倾斜角是()A.30°B.45°C.60°D.90°答案:设直线的倾斜角为α,由直线的斜率为3,得到:tanα=3,又α∈(0,180°),所以α=60°.故选C17.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.18.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为719.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B20.用黄金分割法寻找最佳点,试验区间为[1000,2000],若第一个二个试点为好点,则第三个试点应选在(

)。答案:123621.过P(-1,1),Q(3,9)两点的直线的斜率为(

A.2

B.

C.4

D.答案:A22.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.23.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.24.抛物线的顶点在原点,焦点与椭圆=1的一个焦点重合,则抛物线方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A25.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B26.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D27.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C28.经过点P(4,-2)的抛物线的标准方程为()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C29.如果执行程序框图,那么输出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故选C30.设F为拋物线y2=ax(a>0)的焦点,点P在拋物线上,且其到y轴的距离与到点F的距离之比为1:2,则|PF|等于()

A.

B.a

C.

D.答案:D31.

如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2

,则λ等()

A.

B.1

C.

D.2

答案:D32.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π533.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2

012”时,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要条件.故选A.34.已知f(x)=,若f(x0)>1,则x0的取值范围是()

A.(0,1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论