版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年吉林工业职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.2.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.3.设集合A={1,2,3,4},集合B={1,3,5,7},则集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故选B.4.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.5.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.6.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.
答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:10887.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.8.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.9.不等式的解集是(
)
A.
B.
C.
D.答案:D10.与
向量
=(2,-1,2)共线且满足方程=-18的向量为()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D11.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B12.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*
都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*
都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.13.已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根据题意画出图形,如图所示:可得曲线|x|+|y|=4表示边长为42的正方形,如图ABCD为正方形,x2+y2=r2表示以原点为圆心的圆,过O作OE⊥AB,∵边AB所在直线的方程为x+y=4,∴|OE|=42=22,则满足题意的r的范围是0<r<22.故选A14.用反证法证明“如果a<b,那么“”,假设的内容应是()
A.
B.
C.且
D.或
答案:D15.从点A(2,-1,7)沿向量=(8,9,-12)的方向取线段长||=34,则B点坐标为()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B16.已知正数x,y,z满足5x+4y+3z=10.
(1)求证:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因为5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根据均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,当且仅当x5=y4=z3时,等号成立.综上,9x2+9y2+z2≥2?32=18.17.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D18.
圆ρ=(cosθ+sinθ)的圆心的极坐标是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A19.如图,正方体ABCD-A1B1C1D1的棱长为1.
(1)求A1C与DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.20.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()
A.内切
B.相交
C.外切
D.相离答案:B21.{,,}是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,}②{,,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.
A.1
B.2
C.3
D.4答案:C22.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C23.己知集合A={sinα,cosα},则α的取值范围是______.答案:由元素的互异性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范围是{α|α≠kπ+π4,k∈z},故为{α|α≠kπ+π4,k∈z}.24.直线y=3x的倾斜角为______.答案:∵直线y=3x的斜率是3,∴直线的倾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故为:60°25.已知平面内的向量a,b,c两两所成的角相等,且|a|=2,|b|=3,|c|=5,则|a+b+c|的值的集合为______.答案:设平面内的向量a,b,c两两所成的角为α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,当α=0°时,|a+b+c|2=100,|a+b+c|=10,当α=120°时,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合为{7,10}.故为:{7,10}.26.若数列{an}(n∈N+)为等差数列,则数列bn=a1+a2+a3+…+ann(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列.答案:从商类比开方,从和类比到积,可得如下结论:nC1C2C3Cn故为:nC1C2C3Cn27.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B28.下列关于算法的说法中正确的个数是()
①求解某一类问题的算法是唯一的;
②算法必须在有限步操作之后停止;
③算法的每一步操作必须是明确的,不能有歧义或模糊;
④算法执行后一定产生确定的结果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一类问题的算法不是唯一的,故①不正确;算法是有限步,结果明确性,②④是正确的.对于③,算法的每一步操作必须是明确的,不能有歧义或模糊是正确的;故③正确.∴关于算法的说法中正确的个数是3.故选C.29.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线30.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.31.在极坐标系中,点A的极坐标为(2,0),直线l的极坐标方程为ρ(cosθ+sinθ)+2=0,则点A到直线l的距离为______.答案:由题意得点A(2,0),直线l为
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴点A到直线l的距离为
|2+0+2|2=22,故为22.32.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.33.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若AF=3FB,则k=______.答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.34.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:135.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.36.制作一个面积为1
m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长
l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.37.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A38.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差,中位数分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)
(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。39.用“辗转相除法”求得和的最大公约数是(
)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数40.在同一坐标系中,y=ax与y=a+x表示正确的是()A.
B.
C.
D.
答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.41.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.42.数据:1,1,3,3的众数和中位数分别是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A43.执行如图的程序框图,若p=15,则输出的n=______.答案:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故为:544.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为745.如图,在四边形ABCD中,++=4,==0,+=4,则(+)的值为()
A.2
B.
C.4
D.
答案:C46.(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.47.方程(x2-9)2(x2-y2)2=0表示的图形是()
A.4个点
B.2个点
C.1个点
D.四条直线答案:D48.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.49.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3450.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.第2卷一.综合题(共50题)1.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+22.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:1143.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A4.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(
)
A.
B.
C.
D.,0∈M答案:A5.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.6.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为197.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:228.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:39.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.10.写出1×2×3×4×5×6的一个算法.答案:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.11.平面向量a与b的夹角为60°,a=(2,0),|b|=1
则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1
∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.12.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,2009年8月15日至8
月28日,某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.25B.50C.75D.100答案:∵血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,通过频率分步直方图知道属于醉驾的频率是(0.005+0.01)×10=0.15,∵样本容量是500,∴醉驾的人数有500×0.15=75故选C.13.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,
(1)与BC相等的向量有
______;
(2)与OB长度相等的向量有
______;
(3)与DA共线的向量有
______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有
CB、BC.14.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:2015.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.16.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,则λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,∴a∥b.∴存在实数k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故为217.极坐标方程ρcos2θ=0表示的曲线为()
A.极点
B.极轴
C.一条直线
D.两条相交直线答案:D18.已知x与y之间的一组数据:
x0123y1357则y与x的线性回归方程为y=bx+a必过点______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本组数据的样本中心点是(1.5,4),∴y与x的线性回归方程为y=bx+a必过点(1.5,4)故为:(1.5,4)19.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.20.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.答案:AB与平面BDF所成角的正弦值为.解析:以点B为原点,BA、BC、BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).设平面BDF的一个法向量为n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).设AB与平面BDF所成的角为,则法向量n与的夹角为-,∴cos(-)===,即sin=,故AB与平面BDF所成角的正弦值为.21.集合A={3,2a},B={a,b},若A∩B={2},则A∪B=______.答案:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故为{1,2,3}.22.2008年9月25日下午4点30分,“神舟七号”载人飞船发射升空,其运行的轨道是以地球的中心F为一个焦点的椭圆,若这个椭圆的长轴长为2a,离心率为e,则“神舟七号”飞船到地球中心的最大距离为______.答案:如图,根据椭圆的几何性质可知,顶点B到椭圆的焦点F的距离最大.最大为a+c=a+ae.故为:a+ae.23.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值为()
A.
B.
C.2
D.2
答案:D24.已知
p:所有国产手机都有陷阱消费,则¬p是()
A.所有国产手机都没有陷阱消费
B.有一部国产手机有陷阱消费
C.有一部国产手机没有陷阱消费
D.国外产手机没有陷阱消费答案:C25.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D26.向量化简后等于()
A.
B.
C.
D.答案:C27.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3328.已知不等式a≤对x取一切负数恒成立,则a的取值范围是____________.答案:a≤2解析:要使a≤对x取一切负数恒成立,令t=|x|>0,则a≤.而≥=2,∴a≤2.29.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.30.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.31.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B32.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()
A.4
B.3
C.2
D.1答案:C33.如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.答案:PD与AC互相垂直.理由如下:连接OE,则OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD与AC互相垂直.34.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(1)求实数a的值;
(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.35.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.36.设a=0.7,b=0.8,c=log30.7,则()
A.c<b<a
B.c<a<b
C.a<b<c
D.b<a<c答案:B37.已知向量=(1,2),=(2,x),且=-1,则x的值等于()
A.
B.
C.
D.答案:D38.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()
A.432
B.288
C.216
D.108答案:C39.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角坐标系xAy中,动点P的轨迹方程是______.答案:作PN⊥AD,则PN⊥面A1D1DA,作NH⊥A1D1,N,H为垂足,由三垂线定理可得PH⊥A1D1.以AD,AB,AA1为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故为:x2=2y+8.40.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C41.学校成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()
A.
B.
C.
D.
答案:A42.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或13243.正方体的表面积与其外接球表面积的比为()A.3:πB.2:πC.1:2πD.1:3π答案:设正方体的棱长为a,不妨设a=1,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面积为:S球=4πR2=3π.则正方体的表面积与其外接球表面积的比为:6:3π=2:π.故选B.44.(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=______.答案:如图所示:作出直径AE,∵OA=2,C为OA的中点,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故为355.45.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.46.直线(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为()
A.(3,-3)
B.(-,3)
C.(,-3)
D.(3,-)答案:D47.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ48.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:249.已知曲线x2a+y2b=1和直线ax+by+1=0(a,b为非零实数),在同一坐标系中,它们的图形可能是()A.
B.
C.
D.
答案:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;D选项中不正确,由C选项的判断可知D不正确.故选D50.在极坐标系中,点A的极坐标为(2,0),直线l的极坐标方程为ρ(cosθ+sinθ)+2=0,则点A到直线l的距离为______.答案:由题意得点A(2,0),直线l为
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴点A到直线l的距离为
|2+0+2|2=22,故为22.第3卷一.综合题(共50题)1.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B2.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.3.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)4.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.5.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:
(1)二进制表示中恰有5位数码的好数共有______个;
(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;
其中三位的二进制数是:101,110,111,共有C12+C22个;
其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;
其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;
以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个6.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.7.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有一个黒球与都是红球
B.至少有一个黒球与都是黒球
C.至少有一个黒球与至少有1个红球
D.恰有1个黒球与恰有2个黒球答案:D8.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D9.与直线2x+y+1=0的距离为的直线的方程是()
A.2x+y=0
B.2x+y-2=0
C.2x+y=0或2x+y-2=0
D.2x+y=0或2x+y+2=0答案:D10.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是
______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.11.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.12.把10个相同的小正方体,按如图所示的位置堆放,它的外表含有若干小正方形。如果将图中标有A的一个小正方体搬去,这时外表含有的小正方形个数与搬去前相比(
)答案:A13.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.14.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或015.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=116.考虑坐标平面上以O(0,0),A(3,0),B(0,4)为顶点的三角形,令C1,C2分别为△OAB的外接圆、内切圆.请问下列哪些选项是正确的?
(1)C1的半径为2
(2)C1的圆心在直线y=x上
(3)C1的圆心在直线4x+3y=12上
(4)C2的圆心在直线y=x上
(5)C2的圆心在直线4x+3y=6上.答案:O,A,B三点的位置如右图所示,C1,C2为△OAB的外接圆与内切圆,∵△OAB为直角三角形,∴C1为以线段AB为直径的圆,故半径为12|AB|=52,所以(1)选项错误;又C1的圆心为线段AB的中点(32,2),此点在直线4x+3y=12上,所以选项(2)错误,选项(3)正确;如图,P为△OAB的内切圆C2的圆心,故P到△OAB的三边距离相等均为圆C2的半径r.连接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐标为(1,1),此点在y=x上.所以选项(4)正确,选项(5)错误,综上,正确的选项有(3)、(4).17.每一吨铸铁成本y
(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.18.若log
23(x-2)≥0,则x的范围是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故为(2,3].19.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1520.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5021.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B的中点,则点E的坐标为()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A22.某超市推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;
(2)一次性购物超过100元但不超过300元的一律九折;
(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.
如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.23.已知曲线x2a+y2b=1和直线ax+by+1=0(a,b为非零实数),在同一坐标系中,它们的图形可能是()A.
B.
C.
D.
答案:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;D选项中不正确,由C选项的判断可知D不正确.故选D24.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.25.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=426.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需
即只需由条件,显然成立.∴原不等式成立27.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.28.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是()A.A,B,C三点可以构成直角三角形B.A,B,C三点可以构成锐角三角形C.A,B,C三点可以构成钝角三角形D.A,B,C三点不能构成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三点可以构成直角三角形,故选A.29.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得
a=12.综上,a的值为12或32故选C.30.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.31.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.32.在repeat语句的一般形式中有“until
A”,其中A是
(
)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.33.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.34.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1635.设f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.答案:(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年证券投资基金管理合同
- 2024版个人承包工程项目合同范本
- 2024年度药品批发企业执业药师聘用及供应链管理合同3篇
- 2025版重型工业门窗安装及维修服务合同范本3篇
- 2024年研发项目预付款合同-科技成果转化3篇
- 2024版授权购买协议书3篇
- 二零二五年度WPS合同管理企业内部合同审批流程优化合同3篇
- 2025年普洱市事业单位招聘工作人员特殊岗位招聘历年高频重点提升(共500题)附带答案详解
- 2025年日照大宗商品交易中心限公司招考高频重点提升(共500题)附带答案详解
- 2025年新疆大学招考聘用高频重点提升(共500题)附带答案详解
- 2025年山西文旅集团招聘笔试参考题库含答案解析
- 【8地RJ期末】安徽省芜湖市无为市2023-2024学年八年级上学期期末地理试题(含解析)
- 2023学年杭州市十四中高二数学(上)期末考试卷附答案解析
- 中国AI+Agent应用研究报告
- 五级(程控交换)职业技能鉴定理论考试题及答案
- 医疗救护合作协议
- 《微元法的应用》课件
- 文职-管理学基础知识点
- 标准门面租房合同范本
- 《无人机飞行操控技术(微课版)》全套教学课件
- 2023-2024学年广东省深圳高级中学七年级(上)期末历史试卷
评论
0/150
提交评论