版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年北京电子科技职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B2.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.3.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).
施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;
(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.4.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D5.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.6.向面积为S的△ABC内任投一点P,则△PBC的面积小于S2的概率为______.答案:记事件A={△PBC的面积小于S2},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的34,所以P(A)=阴影部分的面积三角形ABC的面积=34.故为:34.7.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)
分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.8.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).9.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)10.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B11.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D12.若a,b∈{2,3,4,5,7},则可以构成不同的椭圆的个数为()
A.10
B.20
C.5
D.15答案:B13.(文)不等式的解集是(
)A.B.C.D.答案:D解析:【思路分析】:原不等式可化为,得,故选D.【命题分析】考查不等式的解法,要求同解变形.14.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()
A.
B.
C.
D.答案:D15.与向量a=(12,5)平行的单位向量为()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:设与向量a=(12,5)平行的单位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故选C.16.已知2a=3b=6c则有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C17.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A18.若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是()
A.经过两点O1,O2的直线
B.线段O1O2的中垂线
C.两圆公共弦所在的直线
D.一条直线且该直线上的点到两圆的切线长相等答案:D19.设
是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D20.选做题
已知抛物线,过原点O直线与交于两点。
(1)求的最小值;
(2)求的值答案:解:设直线的参数方程为与抛物线方程
联立得21.已知按向量平移得到,则
.答案:3解析:由平移公式可得解得.22.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.23.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.24.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.25.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.26.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.27.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值为()
A.
B.
C.2
D.2
答案:D28.用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:证明:(1)当n=1时,左边=12=1,右边=1×2×36=1,等式成立.(4分)(2)假设当n=k时,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,当n=k+1时,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6这就是说,当n=k+1时等式也成立.(10分)根据(1)和(2),可知等式对任何n∈N*都成立.(12分)29.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D30.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P
F1F2的面积为()
A.
B.1
C.2
D.4答案:B31.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B32.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()
A.0个
B.1个
C.2个
D.3个答案:D33.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:034.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G
是何种曲线之间的关系是:______
圆M与的位置相离相切相交G
是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率
0<e<1,此时r<d,圆M与准线相离;抛物线的离心率
e=1,此时r=d,圆M与准线相切;双曲线的离心率
e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.35.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.36.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是
(
)A.B.C.D.答案:B解析:略37.直线l经过点A(2,-1)和点B(-1,5),其斜率为()
A.-2
B.2
C.-3
D.3答案:A38.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)39.(不等式选讲选做题)已知a,b,c∈R+,且a+b+c=1,则3a+1+3b+1+3c+1的最大值为______.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1),即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此3a+1+3b+1+3c+1的最大值为32.故为:3240.当a>0时,设命题P:函数f(x)=x+ax在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函数f(x)=x+ax在区间(1,2)上单调递增;∴f′(x)≥0在区间(1,2)上恒成立,∴1-ax2≥0在区间(1,2)上恒成立,即a≤x2在区间(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0对任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命题,则P且Q都是真命题,故由①②的交集得:0<a≤1,则实数a的取值范围是0<a≤1.故选A.41.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.42.椭圆的两个焦点坐标是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B43.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.
若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840当且仅当x=64x时,即x=8时取等号.∴当x=8时,总开支y的最大值为3840元,此时每人最少应交384048=80(元).答:若使每个同学游8次,每人最少应交80元钱.44.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(
)
A.0
B.1
C.2
D.不能确定答案:A45.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.16B.112C.536D.19答案:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,∴根据古典概型的概率公式得到P=336=112,故选B.46.参数方程x=cosαy=1+sinα(α为参数)化成普通方程为
______.答案:∵x=cosαy=1+sinα(α为参数)∴x2+(y-1)2=cos2α+sin2α=1.即:参数方程x=cosαy=1+sinα(α为参数)化成普通方程为:x2+(y-1)2=1.故为:x2+(y-1)2=1.47.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC=25,则AB=______.答案:∵AB是直径,∴△ABC是直角三角形,∵C在直径AB上的射影为D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故为:1048.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.49.选修4-2:矩阵与变换
已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.
…(10分)50.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.196第2卷一.综合题(共50题)1.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.2.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2
表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.3.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣14.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______
答案:(1)游戏盘的中奖概率为
38,(2)游戏盘的中奖概率为
14,(3)游戏盘的中奖概率为
26=13,(4)游戏盘的中奖概率为
13,(1)游戏盘的中奖概率最大.故为:(1).5.以直线x+3=0为准线的抛物线的标准方程是______.答案:由题意,抛物线的焦点在x轴上,焦点坐标为(3,0),∴抛物线的标准方程是y2=12x故为:y2=12x6.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.7.如图的曲线是指数函数y=ax的图象,已知a的值取,,,则相应于曲线①②③④的a的值依次为()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A8.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或129.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()
A.
B.
C.
D.答案:D10.已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?答案:(1)证明:由题意可知:动点M到定点F(1,0)的距离等于M到定直线x=-1的距离根据抛物线的定义可知,M的轨迹是抛物线所以抛物线方程为:y2=4x(2)(i)设A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA•OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直线AB过定点M(1,0),(ii)设p(x0,y0)设AB的方程为y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分别是A,B的纵坐标∵AP⊥PB∴kmax•kmin=-1即y1-y0x1-x0•y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4•y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直线PQ的方程为x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定过点(x0+2,-y0)11.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.12.过点P(-3,0)且倾斜角为30°的直线和曲线x=t+1ty=t-1t(t为参数)相交于A,B两点.求线段AB的长.答案:直线的参数方程为
x
=
-3
+
32sy
=
12s
(s
为参数),曲线x=t+1ty=t-1t
可以化为
x2-y2=4.将直线的参数方程代入上式,得
s2-63s+
10
=
0.设A、B对应的参数分别为s1,s2,∴s1+
s2=
6
3,s1•s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.13.
已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()
A.
B.
C.
D.答案:D14.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()
A.
B.0
C.1
D.答案:D15.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.16.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
据以上数据估计两人的技术稳定性,结论是()
A.甲优于乙
B.乙优于甲
C.两人没区别
D.无法判断答案:A17.关于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B18.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()
A.
B.
C.
D.2答案:C19.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).20.方程ax2+2x+1=0至少有一个负的实根的充要条件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0答案:C21.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn22.如果命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是()
A.曲线C是方程f(x,y)=0的曲线
B.方程f(x,y)=0的每一组解对应的点都在曲线C上
C.不满足方程f(x,y)=0的点(x,y)不在曲线C上
D.方程f(x,y)=0是曲线C的方程答案:C23.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:
成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.24.设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|MN|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为a=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准54下线性近似”.
其中所有正确结论的番号为______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的横坐标为λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y轴∴直线MN的方向向量可以为a=(0,1),故②成立对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函数y=5x2在[0,1]上可在标准54下线性近似”,故④成立,③不成立,故为:①②④25.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.26.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C27.用冒泡法对43,34,22,23,54从小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A28.复数3+4i的模等于______.答案:|3+4i|=32+42=5,故为5.29.如图,四边形ABCD内接于⊙O,AD:BC=1:2,AB=35,PD=40,则过点P的⊙O的切线长是()A.60B.402C.352D.50答案:作切线PE,由切割线定理知,PE2=PD•PC=PA•PB,所以PAPC=PAPB,又△PAD与△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA•PB=(PB-AB)•PB=(80-35)×80=602,PE=60.故选A.30.已知△A′B′C′是水平放置的边长为a的正三角形△ABC的斜二测平面直观图,那么△A′B′C′的面积为______.答案:正三角形ABC的边长为a,故面积为34a2,而原图和直观图面积之间的关系S直观图S原图=24,故直观图△A′B′C′的面积为6a216故为:6a216.31.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310
(2X)3=960x3,故为960x3.32.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B33.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:034.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()
A.
B.
C.或
D.或答案:C35.对于空间中的三个向量,
,
,它们一定是()
A.共面向量
B.共线向量
C.不共面向量
D.以上均不对答案:A36.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:237.下列四组函数,表示同一函数的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函数必然具有相同的定义域、值域、对应关系,A中的2个函数的值域不同,B中的2个函数的定义域不同,C中的2个函数的对应关系不同,只有D的2个函数的定义域、值域、对应关系完全相同,故选D.38.如图所示,已知点P为菱形ABCD外一点,且PA⊥面ABCD,PA=AD=AC,点F为PC中点,则二面角CBFD的正切值为()
A.
B.
C.
D.
答案:D39.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).40.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(-1,1)到两直线x-y=0的距离是|2|2=2;圆心(-1,1)到直线x-y-4=0的距离是62=32≠2.故A错误.故选B.41.下列说法中正确的有()
①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.A.①②B.③C.③④D.④答案:中位数数不受少数几个极端值的影响,平均数受样本中的每一个数据影响,故①不正确,抛掷两枚硬币,出现“两枚都是正面朝上”的概率是14“两枚都是反面朝上的概率是14、“恰好一枚硬币正面朝上的概率是12”,故②不正确,用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.正确向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型,故④不正确,故选B.42.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.43.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.44.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ45.曲线x=sinθy=sin2θ(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是______.答案:曲线
x=sinθy=sin2θ
(θ为参数),为抛物线段y=x2(-1≤x≤1),借助图形直观易得0<a≤1.46.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C47.已知抛物线y2=4x上两定点A、B分别在对称轴两侧,F为焦点,且|AF|=2,|BF|=5,在抛物线的AOB一段上求一点P,使S△ABP最大,并求面积最大值.答案:不妨设点A在第一象限,B点在第四象限.如图.抛物线的焦点F(1,0),点A在第一象限,设A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直线AB的方程为y-2-4-2=x-14-1,化简得2x+y-4=0.…(8分)再设在抛物线AOB这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.则点P到直线AB的距离d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以当y0=-1时,d取最大值9510,…(10分)所以△PAB的面积最大值为S=12×35×9510=274
…(11分)此时P点坐标为(14,-1).…(12分).48.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C49.已知向量OA=(2,3),OB=(4,-1),P是线段AB的中点,则P点的坐标是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由线段的中点公式可得OP=12(OA+OB)=(3,1),故P点的坐标是(3,1),故选B.50.若直线3x+4y+m=0与曲线x=1+cosθy=-2+sinθ(θ为参数)没有公共点,则实数m的取值范围是
______.答案:∵曲线x=1+cosθy=-2+sinθ(θ为参数)的普通方程是(x-1)2+(y+2)2=1则圆心(1,-2)到直线3x+4y+m=0的距离d=|3•1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故为:m>10或m<0.第3卷一.综合题(共50题)1.如图所示,在Rt△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=a,∠ABC=θ
(1)求△ABC的面积f(θ)与正方形面积g(θ);
(2)当θ变化时,求f(θ)g(θ)的最小值.答案:(1)由题得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
设正方形的边长为x,则BG=xsinθ,由几何关系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函数y=1+14(t+t4)在(0,1]递减∴ymin=94(当且仅当t=1即θ=π4时成立)∴当θ=π4时,f(θ)g(θ)的最小值为94.2.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆答案:D3.若向量a=(-1,2),b=(-4,3),则a在b方向上的投影为()A.2B.22C.23D.10答案:设a与
b的夹角为θ,则cosθ=a•b|a|•|b|=4+65×5=25,∴则a在b方向上的投影为|a|•cosθ=5×25=2,故选A.4.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.5.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.6.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22•12+02+
02=13,即cosβ=137.已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.
(1)分别求两次变换所对应的矩阵M1,M2;
(2)求△ABC在两次连续的变换作用下所得到△A′B′C′的面积.答案:(1)关于x轴的反射变换M1=100-1,绕原点逆时针旋转90°的变换M2=0-110.(4分)(2)∵M2•M1=0-110100-1=0110,(6分)△ABC在两次连续的变换作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)变换成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面积=12×4×1=2.(10分)8.以双曲线x24-y216=1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程为______.答案:双曲线x24-y216=1的右焦点为F(25,0),一条渐近线为2x+y=0.∴所求圆的圆心为(25,0).∵所求圆被渐近线2x+y=0截得的弦长为6,∴圆心为(25,0)到渐近线2x+y=0的距离d=455=4,圆半径r=9+16=5,∴所求圆的方程是(x-25)2+y2=25.故为(x-25)2+y2=25.9.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B10.A、B是直线l上的两点,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC与BD成60°的角,则C、D两点间的距离是______答案:CD=CA+AB+BD,|CD|=|
CA+AB+BD|,CD=32+32+42+2×
3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故为:5或4311.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A12.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.13.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D14.已知,求证:答案:证明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.15.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.16.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.17.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()
A.40
B.30
C.20
D.12答案:A18.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.19.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()
A.10
B.
C.
D.38答案:A20.算法框图中表示判断的是()A.
B.
C.
D.
答案:∵在算法框图中,表示判断的是菱形,故选B.21.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.22.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()
A.外切
B.内切
C.外离
D.内含答案:A23.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x24.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.25.已知两点P1(2,-1)、P2(0,5),点P在P1P2延长线上,且满足P1P2=-2PP2,则P点的坐标为______.答案:设分点P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).26.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:A27.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(
)
A.
B.
C.
D.答案:A28.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).29.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:030.若非零向量满足,则()
A.
B.
C.
D.答案:C31.已知,,那么P(B|A)等于()
A.
B.
C.
D.答案:B32.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故为[1,2).33.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D34.如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:抛物线y2=a(x+1)可由抛物线y2=ax向左平移一个单位长度得到,因为抛物线y2=a(x+1)的准线方程是x=-3,所以抛物线y2=ax的准线方程是x=-2,且焦点坐标为(2,0),那么抛物线y2=a(x+1)的焦点坐标为(1,0).故选C.35.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C36.刻画数据的离散程度的度量,下列说法正确的是(
)
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院司机岗位聘用合同(2篇)
- 口腔诊室合作协议书(2篇)
- 国贸单证合同(2篇)
- 二零二四年度股权转让协议:科技公司股权交易及权益保障
- 工业仪表购销协议
- 舞台机械设施购销合同
- 展览摊位租赁合同
- 招标代理招标文件的保密
- 无人机植保防治作物病虫害协议
- 电商平台供应商合同协议范本
- 胸腔闭式引流的护理PPT课件(PPT 35页)
- 各潮位站基面关系
- 大课间的活动方案6篇
- 高考函数知识点总结全面资料全
- 大学无机化学-课件-第17章卤素
- 锻造不良缺陷事例分析.
- 趣味英语(课堂PPT)
- 九年级人自然社会教案
- 小学语文-C4支持学生创造性学习与表达教学设计方案+教学反思【2.0微能力认证获奖作品】
- 战略合作框架协议(国企)
- 选矿厂生产工艺技术管理制度
评论
0/150
提交评论