2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年厦门软件职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.下列选项中元素的全体可以组成集合的是()A.2013年1月风度中学高一级高个子学生B.校园中长的高大的树木C.2013年1月风度中学高一级在校学生D.学校篮球水平较高的学生答案:因为集合中元素具有:确定性、互异性、无序性.所以A、B、D都不是集合,元素不确定;故选C.2.设双曲线x2a2-y2b2=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为34c,则双曲线的离心率为______.答案:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:xa+yb=1,即bx+ay-ab=0,∵原点到直线l的距离为34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴离心率为e=2或e=233;故为2或233.3.

如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用

表示向量为(

A.

B.

C.

D.

答案:A4.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.5.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为

______.答案:根据题意:黄豆落在阴影部分的概率是138300矩形的面积为10,设阴影部分的面积为s则有s10=138300∴s=235故为:2356.已知x∈R,i为虚数单位,若(x-2)i-1-i为纯虚数,则x的值为()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]•i-i•i=(x-2)i2-i=(2-x)-i由纯虚数的定义可得2-x=0,故x=2故选C7.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.8.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:39.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为

______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=110.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A11.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又

f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)

≤f(2aba+b)即A≤B≤C故为:A≤B≤C.12.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且,则下列命题中正确命题的个数为(

①;

③;

A.1

B.2

C.3

D.4

答案:C13.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1214.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).15.将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.将一枚质地均匀的硬币连续投掷4次,出现“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.16.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.17.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.18.函数f(x)=log2(3x+1)的值域为()

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.解析:试题分析19.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)

(1)求实数a的值;

(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.20.在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若PA=a,PB=b,PC=c,则BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故为:12a-32b+12c.21.若直线按向量平移得到直线,那么(

)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有无数个答案:D解析:设平移向量,直线平移之后的解析式为,即,所以,满足的有无数多个.22.如图,已知点P在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°.

(Ⅰ)求DP与CC′所成角的大小;

(Ⅱ)求DP与平面AA′D′D所成角的大小.答案:方法一:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于H.设DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA•DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因为cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)方法二:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).设P(x,y,z)则BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,则DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因为cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)23.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.24.已知△ABC中,过重心G的直线交边AB于P,交边AC于Q,设AP=pPB,AQ=qQC,则pqp+q=()A.1B.3C.13D.2答案:取特殊直线PQ使其过重心G且平行于边BC∵点G为重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故选项为A25.设=(-2,2,5),=(6,-4,4)分别是平面α,β的法向量,则平面α,β的位置关系是()

A.平行

B.垂直

C.相交但不垂直

D.不能确定答案:B26.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D27.已知有如下两段程序:

问:程序1运行的结果为______.程序2运行的结果为______.

答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.28.平行投影与中心投影之间的区别是

______.答案:平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点,故为:平行投影的投影线互相平行,而中心投影的投影线交于一点29.如图,在四边形ABCD中,++=4,==0,+=4,则(+)的值为()

A.2

B.

C.4

D.

答案:C30.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.31.两平行直线x+3y-4=0与2x+6y-9=0的距离是

______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:102032.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()

A.既是互斥事件又是对立事件

B.是对立事件而非互斥事件

C.既非互斥事件也非对立事件

D.是互斥事件而非对立事件答案:D33.若e1、e2、e3是三个不共面向量,则向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?请说明理由.答案:解:设c=1a+2b,则即∵a、b不共线,向量a、b、c共面.34.在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=.k001.,N=.0110.,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,

(1)求k的值.

(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.答案:(1)由题设得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或-2.(2)令MN=A,设B=abcd是A的逆矩阵,则AB=0k10abcd=1001⇒ckdkab=1001⇒ck=1dk=0a=0b=1①当k≠0时,上式⇒a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩阵是B=011k0.(10分)②当k≠0时,上式不可能成立,MN不可逆,(11分).35.不等式|x-2|+|x+1|<5的解集为()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C36.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()

A.

B.

C.2

D.答案:B37.双曲线C的焦点在x轴上,离心率e=2,且经过点P(2,3),则双曲线C的标准方程是______.答案:设双曲线C的标准方程x2a2-y2b2=1,∵经过点P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②联立方程组并解得

a2=1,b2=3,双曲线C的标准方程是x2-y23=1,故为:x2-y23=1.38.如图程序输出的结果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B39.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.40.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.41.已知一个四棱锥的三视图如图所示,则该四棱锥的体积是______.答案:因为三视图复原的几何体是正四棱锥,底面边长为2,高为1,所以四棱锥的体积为13×2×2×1=43.故为:43.42.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么

这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.43.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故为:301,637,169,55544.设

是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D45.设a=(4,3),a在b上的投影为522,b在x轴上的投影为2,且|b|≤14,则b为()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x轴上的投影为2,∴设b=(2,y)∵a在b上的投影为522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故选B46.求过点A(2,3)且被两直线3x+4y-7=0,3x+4y+8=0截得线段为32的直线方程.答案:设所求直线l的斜率为k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2条直线的夹角为45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直线的方程为y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.47.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为______.答案:连接AC、BC,则∠ACD=∠ABC,又因为∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.48.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:149.求证:若圆内接四边形的两条对角线互相垂直,则从对角线交点到一边中点的线段长等于圆心到该边对边的距离.答案:以两条对角线的交点为原点O、对角线所在直线为坐标轴建立直角坐标系,(如图所示)

设A(-a,0),B(0,-b),C(c,0),D(0,d),则CD的中点E(c2,d2),AB的中点H(-a2,-b2).又圆心G到四个顶点的距离相等,故圆心G的横坐标等于AC中点的横坐标,等于c-a2,圆心G的纵坐标等于BD中点的纵坐标,等于d-b2.即圆心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要证的结论成立.50.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:2第2卷一.综合题(共50题)1.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D2.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()

A.

B.

C.

D.答案:C3.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).4.下图是由哪个平面图形旋转得到的(

)答案:A5.已知,求证:.答案:证明略解析:因为是轮换对称不等式,可考虑由局部证整体.,相加整理得.当且仅当时等号成立.【名师指引】综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形.6.一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的体积是()A.6B.6C.32D.23答案:可设长方体同一个顶点上的三条棱长分别为a,b,c,则有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故这个长方体的体积是6故为B7.已知集合M={0,1},N={2x+1|x∈M},则M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},当x=0时,2x+1=1;当x=1时,2x+1=3,∴N={1,3}则M∩N={1}.故选A.8.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则

f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.9.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()

A.9

B.1

C.-1

D.-9答案:C10.动点P到直线x+2=0的距离减去它到M(1,0)的距离之差等于1,则动点P的轨迹是______.答案:将直线x+2=0向右平移1个长度单位得到直线x+1=0,则动点到直线x+1=0的距离等于它到M(1,0)的距离,由抛物线定义知:点P的轨迹是以点M为焦点的抛物线.:以点M为焦点以x=-1为准线的抛物线.11.双曲线的渐近线方程是3x±2y=0,则该双曲线的离心率等于______.答案:∵双曲线的渐近线方程是3x±2y=0,∴ba=32,设a=2k,b=3k,则c=13k,∴e=ca=132.:132.12.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()

A.假设至少有一个钝角

B.假设没有一个钝角

C.假设至少有两个钝角

D.假设没有一个钝角或至少有两个钝角答案:C13.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A.33πB.36πC.23πD.3π答案:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为3故V=13×12×π×3=36π故选B14.在线性回归模型y=bx+a+e中,下列说法正确的是()A.y=bx+a+e是一次函数B.因变量y是由自变量x唯一确定的C.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生D.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生答案:线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.A不正确,根据线性回归方程做出的y的值是一个预报值,不是由x唯一确定,故B不正确,随机误差不是由于计算不准造成的,故C不正确,y除了受自变量x的影响之外还受其他因素的影响,故D正确,故选D.15.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C16.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()

A.

B.

C.

D.答案:D17.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D18.已知直线l:(t为参数)的倾斜角是()

A.

B.

C.

D.答案:D19.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.

B.

C.

D.

答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D20.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.21.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(

A.抽签法

B.简单随机抽样

C.分层抽样

D.系统抽样答案:D22.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2323.已知A、B、M三点不共线,对于平面ABM外的任意一点O,确定在下列条件下,点P是否与A、B、M一定共面,答案:解:为共面向量,∴P与A、B、M共面,,根据空间向量共面的推论,P位于平面ABM内的充要条件是,∴P与A、B、M不共面.24.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.25.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.26.(1+2x)6的展开式中x4的系数是______.答案:展开式的通项为Tr+1=2rC6rxr令r=4得展开式中x4的系数是24C64=240故为:24027.选修4-2:矩阵与变换

已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.

…(10分)28.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()

A.

B.

C.

D.答案:D29.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D30.设向量=(0,2),=,则,的夹角等于(

A.

B.

C.

D.答案:A31.2007年10月24日18时05分,在西昌卫星发射中心,“嫦娥一号”卫星顺利升空,24分钟后,星箭成功分离,卫星首次进入以地心为焦点的椭圆形调相轨道,卫星近地点为约200公里,远地点为约51000公里.设地球的半经为R,则卫星轨道的离心率为______(结果用R的式子表示)答案:由题意卫星进入以地心为焦点的椭圆形调相轨道,卫星近地点为约200公里,远地点为约51000公里.设地球的半经为R,易知,a=25600+R,c=25400,则卫星轨道的离心率e=2540025600+R.故为:2540025600+R.32.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.

现已知当n=7时该命题不成立,那么可推得()

A.当n=6时该命题不成立

B.当n=6时该命题成立

C.当n=8时该命题不成立

D.当n=8时该命题成立答案:A33.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.34.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D35.设集合A={x|},则A∩B等于(

A.

B.

C.

D.答案:B36.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.37.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P

F1F2的面积为()

A.

B.1

C.2

D.4答案:B38.将一枚骰子连续抛掷600次,请你估计掷出的点数大于2的大约是______次.答案:一颗骰子是均匀的,当抛这颗骰子时,出现的6个点数是等可能的,将一枚骰子连续抛掷600次,估计每一个嗲回溯出现的次数是100,∴掷出的点数大于2的大约有400次,故为:400.39.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为()

A.0.1

B.0.2

C.0.3

D.0.4答案:C40.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C41.设随机变量X~B(10,0.8),则D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C42.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D43.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,544.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:

未感冒

感冒

合计

试验过

252

248

500

未用过

224

276

500

合计

476

524

1000

根据上表数据,算得Χ2=3.14.以下推断正确的是()

A.血清试验与否和预防感冒有关

B.血清试验与否和预防感冒无关

C.通过是否进行血清试验可以预测是否得感冒

D.通过是否得感冒可以推断是否进行了血清试验答案:A45.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()

A.a<b<c<d

B.a<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C46.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()

A.a=0,b=1

B.a=1,b=0

C.a=1,b=1

D.a=,b=-1答案:B47.如图,四边形ABCD内接于圆O,且AC、BD交于点E,则此图形中一定相似的三角形有()对.

A.0

B.3

C.2

D.1

答案:C48.下列特殊命题中假命题的个数是()

①有的实数是无限不循环小数;

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B49.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()

A.若m∥n,m∥α,则n∥α

B.若α⊥β,m∥α,则m⊥β

C.若α⊥β,m⊥β,则m∥α

D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D50.求下列函数的定义域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).第3卷一.综合题(共50题)1.如图所示,在Rt△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=a,∠ABC=θ

(1)求△ABC的面积f(θ)与正方形面积g(θ);

(2)当θ变化时,求f(θ)g(θ)的最小值.答案:(1)由题得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

设正方形的边长为x,则BG=xsinθ,由几何关系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函数y=1+14(t+t4)在(0,1]递减∴ymin=94(当且仅当t=1即θ=π4时成立)∴当θ=π4时,f(θ)g(θ)的最小值为94.2.设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|MN|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:

①A、B、N三点共线;

②直线MN的方向向量可以为a=(0,1);

③“函数y=5x2在[0,1]上可在标准1下线性近似”;

④“函数y=5x2在[0,1]上可在标准54下线性近似”.

其中所有正确结论的番号为______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的横坐标为λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y轴∴直线MN的方向向量可以为a=(0,1),故②成立对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函数y=5x2在[0,1]上可在标准54下线性近似”,故④成立,③不成立,故为:①②④3.双曲线C的焦点在x轴上,离心率e=2,且经过点P(2,3),则双曲线C的标准方程是______.答案:设双曲线C的标准方程x2a2-y2b2=1,∵经过点P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②联立方程组并解得

a2=1,b2=3,双曲线C的标准方程是x2-y23=1,故为:x2-y23=1.4.用反证法证明“a+b=1”时的反设为()

A.a+b>1且a+b<1

B.a+b>1

C.a+b>1或a+b<1

D.a+b<1答案:C5.对赋值语句的描述正确的是(

①可以给变量提供初值

②将表达式的值赋给变量

③可以给一个变量重复赋值

④不能给同一变量重复赋值A.①②③B.①②C.②③④D.①②④答案:A解析:试题分析:在表述一个算法时,经常要引入变量,并赋给该变量一个值。用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句。赋值语句的一般格式是:变量名=表达式其中“=”为赋值号.故选A。点评:简单题,赋值语句的一般格式是:变量名=表达式其中"="为赋值号。6.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.7.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()

A.+=

B.与方向相同

C.⊥

D.∥答案:D8.在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(2,1),则此直线不能经过两个有理点.答案:证明:假设此直线上有两个有理点A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均为有理数,则有y1=kx1+b,y2=kx2+b,两式相减,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理数经过四则运算后还是有理数,故k为有理数.又由y1=kx1+b知,b也是有理数.又∵点M(2,1)在此直线上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端为无理数,右端为有理数,显然矛盾,故此直线不能经过两个有理点.9.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°10.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为

π3.11.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)12.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()

A.

B.

C.

D.答案:A13.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;

11.14.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.15.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.16.在线性回归模型y=bx+a+e中,下列说法正确的是()A.y=bx+a+e是一次函数B.因变量y是由自变量x唯一确定的C.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生D.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生答案:线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.A不正确,根据线性回归方程做出的y的值是一个预报值,不是由x唯一确定,故B不正确,随机误差不是由于计算不准造成的,故C不正确,y除了受自变量x的影响之外还受其他因素的影响,故D正确,故选D.17.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______

答案:(1)游戏盘的中奖概率为

38,(2)游戏盘的中奖概率为

14,(3)游戏盘的中奖概率为

26=13,(4)游戏盘的中奖概率为

13,(1)游戏盘的中奖概率最大.故为:(1).18.点M的直角坐标是,则点M的极坐标为()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C19.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π20.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]21.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.22.已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=(

)。答案:223.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).24.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1325.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④26.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()

A.点P在直线L上,但不在圆M上

B.点P在圆M上,但不在直线L上

C.点P既在圆M上,又在直线L上

D.点P既不在直线L上,也不在圆M上答案:C27.下列说法不正确的是()A.圆柱侧面展开图是一个矩形B.圆锥的过轴的截面是等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面答案:圆柱的侧面展开图是一个矩形,A正确,因为母线长相等,得到圆锥的轴截面是一个等腰三角形,B正确,圆台平行于底面的截面是圆面,D正确,故选C.28.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:629.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于30.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是

A.

B.

C.

D.答案:A31.设求证:答案:证明见解析解析:证明:∵

∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。32.在语句PRINT

3,3+2的结果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B33.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,

cos〈,〉=.

(1)建立适当的空间坐标系,写出点E的坐标;

(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.34.已知平面上的向量PA、PB满足|PA|2+|PB|2=4,|AB|=2,设向量PC=2PA+PB,则|PC|的最小值是

______.答案:|PA|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论