下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市何家堡中学2021年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆与圆的位置关系是(
)
A.内切 B.外离 C.内含 D.相交参考答案:A2.正六边形ABCDEF的边长为2,以顶点A为起点,其他顶点为终点的向量分别为以顶点D为起点,其他顶点为终点的向量分别为若P,Q分别为的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},则下列对P,Q的描述正确的是()A. B. C. D.参考答案:A【分析】利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选:A.【点睛】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.3.将直线3x-4y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2-2x-4y+4=0相切,则实数λ的值为 (
) A.-3或7
B.-2或8
C.0或10
D.1或11参考答案:A略4.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定参考答案:A【考点】函数单调性的性质.【专题】计算题.【分析】函数f(x)=ax2+2ax+4(0<a<3)为二次函数,开口向上,对称轴为x=﹣1,比较f(x1)与f(x2)的大小即看x1和x2谁到对称轴的距离大.【解答】解:已知函数f(x)=ax2+2ax+4(0<a<3),二次函数的图象开口向上,对称轴为x=﹣1,0<a<3,∴x1+x2=1﹣a∈(﹣2,1),x1与x2的中点在(﹣1,)之间,x1<x2,∴x2到对称轴的距离大于x1到对称轴的距离,∴f(x1)<f(x2),故选A.【点评】本题考查函数单调性的应用,利用单调性比较大小,有较强的综合性.熟练掌握二次函数的性质是解决本题的关键.5.已知函数y=|x﹣3|+1在区间[0,9]上的值域是()A.[4,7] B.[0,7] C.[1,7] D.[2,7]参考答案:C【考点】函数的值域.【分析】对x进行讨论,去掉绝对值,利用函数的单调性,求解即可.【解答】解:由题意:函数y=|x﹣3|+1,定义域为[0,9];当x≥3时,函数y=x﹣2,x在[3,9]是增函数;当x<3时,函数y=4﹣x,x在[0,3)是减函数;故得x=3时,函数y的值最小为:1;x=9时,函数y的值最大为:7;故得函数y=|x﹣3|+1在区间[0,9]上的值域为[1,7].故选:C.6.下列函数中,在区间(0,1)上是增函数的是A.
B.
C.
D.参考答案:A7.下列四个命题中,正确的是(
)A.
第一象限的角必是锐角 B.锐角必是第一象限的角C.终边相同的角必相等 D.第二象限的角必大于第一象限的角参考答案:B8.函数的图象是()A. B. C. D.参考答案:D【考点】函数的图象与图象变化.【专题】函数的性质及应用.【分析】先判断函数的奇偶性,利用基本初等函数的单调性,即可判断出.【解答】解:令f(x)==,其定义域为{x|x≠0}.∵f(﹣x)==﹣f(x),因此函数f(x)是奇函数,其图象关于原点对称,故排除B,C;当x>0时,∵函数y=,y=﹣x为单调递减,故排除A.综上可知:正确答案为D.【点评】本题考查了函数的单调性与奇偶性,属于基础题.9.下列函数中,周期为,且在[]上单调递增的奇函数是
A.y=sin(2x+)B.y=cos(2x-)
C.y=cos(2x+
D.y=sin(x-)参考答案:C10.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为(
)(A) (B)(C) (D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是.参考答案:(0,1)【考点】函数的零点.【专题】作图题.【分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案.【解答】解:由题意作出函数的图象,关于x的方程f(x)=k有两个不同的实根等价于函数,与y=k有两个不同的公共点,由图象可知当k∈(0,1)时,满足题意,故答案为:(0,1)【点评】本题考查方程根的个数,数形结合是解决问题的关键,属基础题.12.在△ABC中,,,则BC的值为________参考答案:【分析】由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.13.若幂函数的图象经过点(,),则该函数在(0,上是
函数(只填单调性).参考答案:减14.已知正四棱锥,底面面积为,一条侧棱长为,则它的侧面积为
.参考答案:略15.已知sin(α+π)=﹣,则sin(2α+)=.参考答案:
【考点】两角和与差的正弦函数.【分析】根据诱导公式和二倍角公式计算即可.【解答】解:∵sin(α+π)=﹣,∴sinα=,∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=,故答案为:.16.若函数f(x)=x2+(a﹣1)x+2在(﹣∞,4]上是单调递减的,则实数a的取值范围为.参考答案:{a|a≤﹣7}【考点】二次函数的性质.【分析】判断二次函数的开口方向,求出对称轴,利用已知条件列出不等式求解即可.【解答】解:函数f(x)=x2+(a﹣1)x+2的开口向上,对称轴为:x=,函数f(x)=x2+(a﹣1)x+2在(﹣∞,4]上是单调递减的,可得4≤,解得a≤﹣7,故答案为:{a|a≤﹣7}.17.y=x﹣的值域是.参考答案:{y|y≤}【考点】函数的值域.【分析】先求函数的定义域,然后利用换元法转化为一元二次函数进行求解即可.【解答】解:由1﹣4x≥0得x≤,设t=,则t≥0,且x=(1﹣t2),则函数等价为y=(1﹣t2)﹣t=﹣(t+2)2+,∵t≥0,∴当t=0时,y取得最大值,此时y=,∴y≤,即函数的值域为{y|y≤},故答案为:{y|y≤}【点评】本题主要考查函数值域的求解,利用换元法,转化为一元二次函数是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)设函数f(x)=a﹣,(1)描述函数f(x)的单调性,并证明你的结论;(2)确定a的值,使f(x)为奇函数并求此时f(x)的值域.参考答案:考点: 函数单调性的判断与证明;函数奇偶性的判断.专题: 计算题;函数的性质及应用.分析: (1)运用函数的单调性的定义,注意作差、变形、定符号和下结论,即可判断;(2)由函数的奇偶性的定义,即可得到a,再运用变量分离,结合指数函数的值域,即可得到所求值域.解答: (1),∵x1<x2,∴,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴不论a为何值,f(x)总为增函数;(2)假设存在实数a,函数是奇函数,因为f(x)的定义域为R,所以f(0)=a﹣1=0,所以a=1.此时,则,所以f(x)为奇函数.即存在实数a=1,使函数f(x)为奇函数.∵,∴,∴f(x)的值域为:(﹣1,1).点评: 本题考查函数的奇偶性和单调性的判断,考查函数的值域的求法,考查运算能力,属于中档题.19.已知全集,集合,,(1)求(2).参考答案:略20.已知函数(且).
(1)用定义证明函数在上为增函数;
(2)设函数,若在是单调函数,且在该区间上恒成立,求实数m的取值范围.参考答案:解:(Ⅰ)设
()()
∵,
∴<0,>0
∴
∴函数在上为增函数………6分
(Ⅱ)
对称轴,定义域x∈[2,5]………7分
①在[2,5]上单调递增且
………11分
②在[2,5]上单调递减且
无解………15分
综上所述………16分21.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.参考答案:【考点】集合关系中的参数取值问题;交集及其运算.【分析】(1)化简集合B,然后求集合的交集.(2)利用B∪C=C,得到B?C,然后求实数a的取值范围.【解答】解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…所以A∩B={x|2≤x<3}…(2)因为B∪C=C,所以B?C…所以a﹣1≤2,即a≤3…22.(本小题满分12分)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.参考答案:解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年年七年级数学人教版下册专题整合复习卷27.3 位似(1)(含答案)-
- 研发团队有效管理培训
- 幼儿音乐教育活动的策划计划
- 壬二酸行业相关投资计划提议
- 自然观察小班孩子的环境教育计划
- 会计、审计及税务服务相关行业投资方案范本
- 制定企业社会责任与人事发展结合的计划
- 班级成员角色的明确计划
- 社区小型创业支持的工作方案计划
- 教育管理制度培训
- 美团合作协议书范本(2024版)
- 第21课《小圣施威降大圣》课件 2024-2025学年统编版语文七年级上册
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
- 天津市部分区2022-2023学年七年级上学期期末练习生物试题
- 小学三年级-安全知识考试试题-(附答案)-
- 医院门诊医生绩效考核标准及评分细则
- MOOC 体育保健学-江西财经大学 中国大学慕课答案
- 广东省深圳市罗湖区2022-2023学年二年级上学期数学期中复习试卷
- 康复科护理工作总结及计划
- 基于VMI的库存管理
- 建筑工程钢结构焊接变形的控制措施
评论
0/150
提交评论