版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市繁峙县城关镇中学2023年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题中的假命题是(
)A.,
B.,C.
,
D.,参考答案:B略2.在四面体ABCD中,已知棱AC的长为,其余各棱的长都为1,则二面角A﹣CD﹣B的余弦值是()A.B.C.D.参考答案:C略3.二项式(﹣)10展开式中的常数项是()A.360 B.180 C.90 D.45参考答案:B【考点】DC:二项式定理的应用.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.【解答】解:展开式的通项为Tr+1=(﹣2)r令5﹣r=0得r=2所以展开式的常数项为=180故选B4.一个路口的红绿灯红灯时间是30秒,黄灯时间是5秒,绿灯时间是40秒,当你到达路口时遇到概率最大的情况是(
)A.红灯 B.黄灯C.绿灯 D.不能确定参考答案:C考点:几何概型试题解析:遇到红灯的概率为:遇到黄灯的概率为:遇到绿灯的概率为:
所以当你到达路口时遇到概率最大的情况是绿灯。故答案为:C5.函数的零点所在的一个区间是(A)
(B)
(C)
(D)参考答案:B略6.在平面直角坐标系xOy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为(
)A.8
B.6
C.2
D.4参考答案:D7.在数学归纳法证明“”时,验证当时,等式的左边为()A.
B.
C.
D.参考答案:C8.已知直线y=x-l与抛物线交于A,B两点,则等于
(
)(A)
(B)6
(C)7
(D)8参考答案:D9.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000 C.1200 D.1500参考答案:C【考点】分层抽样方法;等差数列的通项公式.【分析】根据等差数列的性质求出a,b,c的关系,结合分层抽样的定义建立比例关系即可得到结论.【解答】解:∵a、b、c构成等差数列,∴a+c=2b,则第二车间生产的产品数为=1200,故选:C10.如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为(
)A.4
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知曲线C:+y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.参考答案:【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.12.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.参考答案:(3,+∞)【考点】根的存在性及根的个数判断.【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).13.已知函数,若f(x)的值域为R,则实数m的取值范围是__________.参考答案:[1,+∞)由题意得取遍上每个值,因此,即,因此实数的取值范围是14.已知,则________________参考答案:15.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点在平面内,其余顶点在的同侧,正方体上与顶点相邻的三个顶点到的距离分别为1,2和4,是正方体的其余四个顶点中的一个,则到平面的距离可能是:①3;
②4;
③5;
④6;
⑤7以上结论正确的为______________。(写出所有正确结论的编号)参考答案:①③④⑤略16.不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是_________.参考答案:.【分析】根据古典概型概率公式求解.【详解】从5只球中随机取出2只球,共有种基本事件,从5只球中取出2只球颜色相同求,共有种基本事件,因此所求概率为17.有一个底面圆的半径为1,高为3的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.参考答案:【考点】几何概型;旋转体(圆柱、圆锥、圆台).【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P到点O1,O2的距离都大于1的概率.【解答】解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P====,故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)一组数据,,,,的平均数是,是这组数据的中位数,设.(Ⅰ)求的展开式中的项的系数;(Ⅱ)求的展开式中系数最大的项和系数最小的项.参考答案:故展开式中的项的系数为―――――――6分
(II)的展开式中共8项,其中第4项和第5项的二项式系数最大,而第5项的系数等于第5项二项式系数,故第5项的系数最大,即最大项为,
第4项的系数等于第4项二项式系数的相反数,故第4项的系数最小,即最小项为
――――12分19.已知复数z满足|z|=,z2的虚部为﹣2,且z所对应的点在第二象限.(1)求复数z;(2)若复数ω满足|ω﹣1|≤,求ω在复平面内对应的点的集合构成图形的面积.参考答案:(1)设出复数z,利用已知列出方程组,求解可得复数z;(2)把复数z=﹣1+i代入,利用复数代数形式的乘除运算化简,由复数求模公式计算||,由复数ω满足|ω﹣1|≤,由复数的几何意义得出ω在复平面内对应的点的集合构成图形是什么,从而计算出对应面积.解:(1)设z=x+yi(x,y∈R),则z2=x2﹣y2+2xyi,由|z|=,z2的虚部为﹣2,且z所对应的点在第二象限,得,解得:,∴z=﹣1+i;(2)由(1)知:复数z=﹣1+i,∴==,∴||=,∴复数ω满足|ω﹣1|≤,由复数的几何意义得:ω在复平面内对应的点的集合构成图形是以(1,0)为圆心,为半径的圆面,∴其面积为.20.已知抛物线:的准线与轴交于点,过点斜率为的直线与抛物线交于、两点(在、之间).(1)为抛物线的焦点,若,求的值;(2)若,求的面积
参考答案:(1)(1)法一:由已知
设,则,
,
由得,,解得法二:记A点到准线距离为,直线的倾斜角为,由抛物线的定义知,∴,∴(2)方法一:
又
求根公式代入可解出
方法二:
略21.设函数.(1)当,时,恒成立,求b的范围;(2)若在处的切线为,求a、b的值.并证明当时,.参考答案:(1)(2)见解析【试题分析】(1)当时,由于,故函数单调递增,最小值为.(2)利用切点和斜率为建立方程组,解方程组求得的值.利用导数证得先证,进一步利用导数证,从而证明原不等式成立.【试题解析】解:由,当时,得.当时,,且当时,,此时.所以,即在上单调递増,所以,由恒成立,得,所以.(2)由得,且.由题意得,所以.又切线上.所以.所以.所以.先证,即,令,则,所以在是增函数.所以,即.①再证,即,令,则,时,,时,,时,.所以在上是减函数,在上是增函数,所以.即,所以.②由①②得,即在上成立.【点睛】本小题主要考查利用导数解决不等式恒成立问题,考查利用导数证明不等式.第一问由于a题目给出,并且导函数没有含有b,故可直接有导数得到函数的单调区间,由此得到函数的最小值,令函数的最小值大于或等于零,即可求得b的取值范围,从而解决了不等式恒成立问题.22.如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分别为PC,PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求CD与平面ADMN所成的角的正弦值.参考答案:【考点】用空间向量求直线与平面的夹角;空间中直线与直线之间的位置关系;直线与平面垂直的判定.【分析】(Ⅰ)解法1先由AD⊥PA.AD⊥AB,证出AD⊥平面PAB得出AD⊥PB.又N是PB的中点,PA=AB,得出AN⊥PB.证出PB⊥平面ADMN后,即可证出PB⊥DM.解法2:如图,以A为坐标原点建立空间直角坐标系A﹣xyz,设BC=1,通过证明证出PB⊥DM(Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,所以CD与平面ADMN所成的角为∠BQN.在Rt△BQN中求解即可.解法2,通过PB⊥平面ADMN,可知是平面ADMN的一个法向量,的余角即是CD与平面ADMN所成的角.【解答】(本题满分13分)解:(Ⅰ)解法1:∵N是PB的中点,PA=AB,∴AN⊥PB.∵PA⊥平面ABCD,所以AD⊥PA.又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB.又AD∩AN=A,∴PB⊥平面ADMN.∵DM?平面ADMN,∴PB⊥DM.
…解法2:如图,以A为坐标原点建立空间直角坐标系A﹣xyz,设BC=1,可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年年七年级数学人教版下册专题整合复习卷27.3 位似(1)(含答案)-
- 研发团队有效管理培训
- 幼儿音乐教育活动的策划计划
- 壬二酸行业相关投资计划提议
- 自然观察小班孩子的环境教育计划
- 会计、审计及税务服务相关行业投资方案范本
- 制定企业社会责任与人事发展结合的计划
- 班级成员角色的明确计划
- 社区小型创业支持的工作方案计划
- 教育管理制度培训
- 美团合作协议书范本(2024版)
- 第21课《小圣施威降大圣》课件 2024-2025学年统编版语文七年级上册
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
- 天津市部分区2022-2023学年七年级上学期期末练习生物试题
- 小学三年级-安全知识考试试题-(附答案)-
- 医院门诊医生绩效考核标准及评分细则
- MOOC 体育保健学-江西财经大学 中国大学慕课答案
- 广东省深圳市罗湖区2022-2023学年二年级上学期数学期中复习试卷
- 康复科护理工作总结及计划
- 基于VMI的库存管理
- 建筑工程钢结构焊接变形的控制措施
评论
0/150
提交评论