下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市原平铁路职工子弟中学2022年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题正确的是(
)A.
B.
C.
D.若参考答案:C2.a∈R,|a|<3成立的一个必要不充分条件是()A.a<3 B.|a|<2 C.a2<9 D.0<a<2参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】由|a|<3,解得﹣3<a<3.即可判断出结论.【解答】解:由|a|<3,解得﹣3<a<3.∴|a|<3成立的一个必要不充分条件是a<3.故选:A.3.某校高二共有8个班,现有10个三好生名额需分配到各班,每班至少1个名额的分配方法有(
)种.ks5uA.16
B.24
C.36
D.64参考答案:C略4.在等差数列中,已知,那么等于-------------(
)A.4
B.5
C.6
D.7参考答案:A略5.若为抛物线上一点,是抛物线的焦点,点的坐标,则当最小时,直线的方程为(
)A.
B.
C.
D.参考答案:D6.若集合,,则是A.B.C.D.参考答案:B略7.已知,三个命题①;②;③;正确命题的个数是A.0
B.1
C.2
D.3参考答案:D8.下列命题中,真命题是(
)A.存在
B.对任意的C.的充要条件是
D.是的充分条件参考答案:D9.如图是函数的大致图象,则等于A.1
B.0
C. D. 参考答案:B略10.算法的三种基本结构是(
).顺序结构、条件结构、循环结构
.顺序结构、流程结构、循环结构.顺序结构、分支结构、流程结构
.流程结构、循环结构、分支结构参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若,,则
参考答案:略12.若,点在双曲线上,则点到该双曲线左焦点的距离为______.参考答案:略13.大小、形状相同的白、黑球各一个,现依次有放回地随机摸取2次,则摸取的2个球均为白色球的概率是_______.参考答案:14.已知矩阵A=,B=,C=,且A+B=C,则x+y的值为
.参考答案:6【考点】二阶行列式与逆矩阵.【分析】由题意,,求出x,y,即可得出结论.【解答】解:由题意,,∴x=5,y=1,∴x+y=6.故答案为6.15.调查者通过随机询问72名男女中学生喜欢文科还是理科,得到如下列联表(单位:名)性别与喜欢文科还是理科列联表
喜欢文科喜欢理科总计男生82836女生201636总计284472中学生的性别和喜欢文科还是理科________关系.(填“有”或“没有”)参考答案:略16.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出不同的四位数个数为(
)A.78 B.102 C.114 D.120参考答案:C分析:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的四张卡片为2张1和2张2;④取出四张卡片中有3个重复数字,则重复数字为1,分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得结论.详解:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;此时有种顺序,可以排出24个四位数.②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2,3,4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出个四位数同理,若重复的数字为2,也可以排出36个重复数字;③若取出的四张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排两个2,则可以排出个四位数;④取出四张卡片中有3个重复数字,则重复数字为1,在2,3,4中取出1个卡片,有种取法,安排在四个位置中,有种情况,剩余位置安排1,可以排出个四位数,则一共有个四位数,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.17.已知直线2x+y﹣2=0和mx﹣y+1=0的夹角为,则m的值为
.参考答案:或3【考点】两直线的夹角与到角问题.【专题】直线与圆.【分析】由条件利用两条直线的夹角公式,求得m的值.【解答】解:由直线2x+y﹣2=0和mx﹣y+1=0的夹角为,它们的斜率分别为﹣2、m,可得tan=1=||,求得m=或3,故答案为:或3.【点评】本题主要考查两条直线的夹角公式的应用,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ex(2x﹣1),g(x)=ax﹣a(a∈R).(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.参考答案:【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=em(2m+1),又n=am﹣a=em(2m﹣1),解方程可得a的值;(2)函数f(x)=ex(2x﹣1),g(x)=kx﹣k,问题转化为存在唯一的整数x0使得f(x0)在直线y=kx﹣k的下方,求导数可得函数的极值,数形结合可得﹣k>f(0)=﹣1且f(﹣1)=﹣3e﹣1≥﹣k﹣k,解关于k的不等式组可得.【解答】解:(1)f′(x)=ex(2x﹣1)+2ex=ex(2x+1),设切点为(m,n),由题意可得a=em(2m+1),又n=am﹣a=em(2m﹣1),解方程可得,a=1或4;(2)函数f(x)=ex(2x﹣1),g(x)=ax﹣a由题意知存在唯一的整数x0使得f(x0)在直线y=ax﹣a的下方,∵f′(x)=ex(2x﹣1)+2ex=ex(2x+1),∴当x<﹣时,f′(x)<0,当x>﹣时,f′(x)>0,∴当x=﹣时,f(x)取最小值﹣2,当x=0时,f(0)=﹣1,当x=1时,f(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>f(0)=﹣1且f(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1.【点评】本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.19.已知A,B,C为椭圆W:x2+2y2=2上的三个点,O为坐标原点.(Ⅰ)若A,C所在的直线方程为y=x+1,求AC的长;(Ⅱ)设P为线段OB上一点,且|OB|=3|OP|,当AC中点恰为点P时,判断△OAC的面积是否为常数,并说明理由.参考答案:【考点】椭圆的应用.【分析】(Ⅰ)根据直线和椭圆的位置关系即可求出AC的长;(Ⅱ)联立直线与椭圆的方程,利用根与系数之间的关系即可求出三角形的面积.【解答】解:(Ⅰ)由,得3x2+4x=0,解得x=0或,∴A,C两点的坐标为(0,1)和,∴.(Ⅱ)①若B是椭圆的右顶点(左顶点一样),则,∵|OB|=3|OP|,P在线段OB上,∴,求得,∴△OAC的面积等于.②若B不是椭圆的左、右顶点,设AC:y=kx+m(m≠0),A(x1,y1),C(x2,y2),由得(2k2+1)x2+4kmx+2m2﹣2=0,则,,∴AC的中点P的坐标为,∴,代入椭圆方程,化简得2k2+1=9m2.计算|AC|===.∵点O到AC的距离dO﹣AC=.∴△OAC的面积=.综上,△OAC面积为常数.20.已知函数,其导函数为。(Ⅰ)求在处的切线的方程
(Ⅱ)求直线与图象围成的图形的面积参考答案:解:(Ⅰ)
又
………4分
即:
………6分
(Ⅱ)由
………8分
………12分略21.(8分)已知函数f(x)=x3-3x2+2x(Ⅰ)在处的切线平行于直线,求点的坐标;(Ⅱ)求过原点的切线方程.参考答案:f′(x)=3x2-6x+2.(1)设,则,解得.
则(2)ⅰ)当切点是原点时k=f′(0)=2,所以所求曲线的切线方程为y=2x.ⅱ)当切点不是原点时,设切点是(x0,y0),则有y0=x-3x+2x0,k=f′(x0)=3x-6x0+2,①22.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当<
时,求实数取值范围.
参考答案:解:(Ⅰ)由题意知,所以.即.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体检中心前台服务工作总结
- 租赁商业用房合同三篇
- 化工行业员工安全培训方案实施
- 制造行业安全管理工作总结
- 2023年高考语文试卷(天津)(空白卷)
- 2024年美术教案集锦7篇
- 2024年电力通信设备运检员理论备考试题库及答案
- 创意设计人才中介合同(2篇)
- 黄金卷8-【赢在中考·黄金八卷】(解析版)
- 2025新生入学贷款还款协议合同
- 火力发电厂有关职业病的危害及防护
- 民主测评票(三种样式)
- 班车安全检查表(2015-7-14)V3 0 (2)
- 城投集团年度安全管理工作计划
- 一、 行业协会申请设立分支机构、代表机构应提交的文件:
- 幼儿园幼儿园理事会成员一览表
- 学生对课堂教学满意度调查
- 住房公积金中心窗口人员个人工作总结
- 集成电路单粒子效应评估技术研究PPT课件
- 幼儿园小班生成活动教案20篇
- 讲师与平台的合作协议
评论
0/150
提交评论